UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA EN ENERGÍA

Modelo termodinámico flash isotérmico bifásico para evaluar el sistema vapor flash de condensados de secadores y cocinas en la planta pesquera COPEINCA S.A, Chimbote-2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO EN ENERGÍA

Autor

Bach. Vásquez Montes, Miguel Jhunyor

Asesor

Mg. Pérez Pinedo, Oscar Fernando DNI: 32739412 Código ORCID: 0000-0002-5780-6115

Nuevo Chimbote- Perú

2024

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA escuela profesional de ingeniería en energía

CARTA DE CONFORMIDAD DEL ASESOR

La presente tesis ha sido revisada y desarrollada en cumplimiento del objetivo propuesto y reúne las condiciones formales y metodológicas, estando encuadrado dentro de las áreas y líneas de investigación conforme al reglamento general para obtener el título profesional en la Universidad Nacional del Santa (R.D Nº492-2017-CU-R-UNS) de acuerdo a la denominación siguiente:

TÍTULO DE TESIS

Modelo termodinámico flash isotérmico bifásico para evaluar el sistema vapor flash de condensados de secadores y cocinas en la planta pesquera COPEINCA S.A, Chimbote-2022

Autor(es)

Bach. Vásquez Montes, Miguel Jhunyor

Mg. Oscar Fernándo Pérez Pinedo DNI 32739412 Código Orcid 0000-0002-5780-6115

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA EN ENERGÍA

HOJA DE CONFORMIDAD DELJURADO EVALUADOR

El presente Jurado Evaluador da la conformidad del presente informe, desarrollando en cumplimiento del objetivo propuesto y presentado conforme al Reglamento General para la obtener el Título Profesional en la Universidad Nacional del Santa, titulado:

"MODELO TERMODINÁMICO FLASH ISOTÉRMICO BIFÁSICO PARA EVALUAR EL SISTEMA VAPOR FLASH DE CONDENSADOS DE SECADORES Y COCINAS EN LA PLANTA PESQUERA COPEINCA S.A, CHIMBOTE-2022"

AUTORES:

Miguel Jhunyor Vásquez Montes

Revisado y evaluado por el siguiente Jurado Evaluador:

Mg.Hector Domingo Benites Villegas PRESIDENTE DNI: 17826239 COD. ORCID:0000-0002-8809-6371

ung Ill

M.Sc.Roberte Carlos Chucuya Huallpachoque SECRETARIO DNI: 40149444 COD. ORCID: 0000-0001-9175-5545

Mg. Oscar Fernando Pérez Pinedo INTEGRANTE DNI: 32739412 COD. ORCID: 0000-0002-5780-6115

ACTA DE SUSTENTACIÓN DE TESIS

El día jueves 3 del mes de octubre del año dos mil veinticuatro, siendo las 11:00 a.m. en el Aula E-3 de la Escuela Profesional de Ingeniería en Energía, en cumplimiento al Art. 68 del Reglamento General de Grados y Títulos, aprobado con Resolución N°337-2024-CU-R-UNS de fecha 12.04.24, se instaló el Jurado Evaluador designado mediante **Resolución Nº 318-2024-UNS-CFI** de fecha 21.06.24, integrado por los siguientes docentes:

\triangleright	Mg. Héctor Domingo Benites Villegas	:	Presidente
\triangleright	M.Sc. Roberto Carlos Chucuya Huallpachoque	:	Secretario
\triangleright	Mg. Oscar Fernando Pérez Pinedo	:	Integrante

Y según la **Resolución Decanal N°592-2024-UNS-FI de fecha 25.09.24.**, se **DECLARA EXPEDITO** al bachiller para dar inicio a la sustentación y evaluación de la Tesis, titulada: "MODELO TERMODINÁMICO FLASH ISOTÉRMICO BIFÁSICO PARA EVALUAR EL SISTEMA VAPOR FLASH DE CONDENSADOS DE SECADORES Y COCINAS EN LA PLANTA PESQUERA COPEINCA S.A. CHIMBOTE - 2022", perteneciente al bachiller: VÁSQUEZ MONTES MIGUEL JHUNYOR, con código de matrícula N°0201311045, teniendo como asesor al docente Mg. Oscar Fernando Pérez Pinedo, según Resolución Decanal N° 263-2022-UNS-FI de fecha 23.05.22.

Terminada la sustentación del bachiller, respondió las preguntas formuladas por los miembros del jurado y el público presente.

El Jurado después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo y con las sugerencias pertinentes, en concordancia con el artículo 73° del Reglamento General de Grados y Títulos de la Universidad Nacional del Santa, declara:

BACHILLER	PROMEDIO	PONDERACIÓN
VÁSQUEZ MONTES MIGUEL JHUNYOR	15	REGULAR

Siendo las 12:00 p.m. del mismo día, se da por terminado el acto de sustentación, firmando los integrantes del jurado en señal de conformidad.

Mg. Héctor Domingo Benites Villegas PRESIDENTE

mungath

M.Sc. Roberto Carlos Chucuya Huallpachoque SECRETARIO

Mg. Oscar Fernando Pérez Pinedo INTEGRANTE

turnitin 💭

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega:	Junior P
Título del ejercicio:	ASESORADOS TESIS
Título de la entrega:	VASQUEZ MONTES Miguel informe final.pdf
Nombre del archivo:	VASQUEZ_MONTES_Miguel_informe_final.pdf
Tamaño del archivo:	1.88M
Total páginas:	89
Total de palabras:	16,608
Total de caracteres:	80,231
Fecha de entrega:	10-sept2024 11:23a. m. (UTC-0500)
Identificador de la entre	2450184774

Derechos de autor 2024 Turnitin. Todos los derechos reservados.

VASQUEZ MONTES Miguel informe final.pdf

INFORME DE ORIGINALIDAD $2_{\%}$ **PUBLICACIONES** INDICE DE SIMILITUD FUENTES DE INTERNET TRABAJOS DEL **ESTUDIANTE** FUENTES PRIMARIAS repositorio.uns.edu.pe 14% Fuente de Internet 2% vsip.info 2 Fuente de Internet alicia.concytec.gob.pe 3 % Fuente de Internet A. A. Rabah. "Prediction of Molar Volumes of 1% 4 the Sudanese Reservoir Fluids", Journal of Thermodynamics, 2010 Publicación dspace.ups.edu.ec 5 % Fuente de Internet repositorio.unp.edu.pe <1% 6 Fuente de Internet Submitted to ipn <1% 7 Trabajo del estudiante renati.sunedu.gob.pe 8 Fuente de Internet

Índice

Resumen Abstract

CAPITULO I: INTRODUCCION 1 1 Antecedentes	2
1.2 Formulación del problema	2
1.3 Objetivo general	6
1.4 Objetivos específicos	6
1.5 Uipótagia	0
1.5 Hipotesis	0
1.6 Justificación y limitaciónes del trabajo	
1.7 Limitaciones de la investigación	8
2.1 El vapor	10
2.2. Vapor como fuente de energía	10
2.3 Condensado	11
2.4 Primera ley de la termodinámica	12
2.5 Fundamento de balance de materia y energía	12
2.6 Modelo termodinámico	12
2.7 Modelo termodinámico flash isotérmico bifásico	13
2.8 Indicadores energéticos	15
2.9 Evaluación económica	15
CAPITULO III: MATERIALES Y METODOS	
3.1 Materiales	18
3.2 Método de trabajo	21
3.3 Población y muestra	22
3.4 Técnicas e instrumentos	23
CAPITULO IV: RESULTADOS Y DISCUSIONES 4.1 Condensado disponible en planta	26
4.2 Cálculo de fluio masico del sistema	28
4 3 Modelo flash isotérmico a presión de fluio másico de 3 5 har	28
4 4 Hoia de cálculo programado para iteraciones	35
4.4.1 Iteraciones para $\alpha = 0.6$ a Presión de 1.5 har	35
4.4.2 Iteraciones para $\alpha = 0.70$ a Presión de 1.5 Bar	36
$4.4.3$ Iteraciones para $\alpha = 0.80$ a Presión de 1.5 Bar	
4.4.4 Iteraciones para $\alpha = 0.00$ a Presión de 1.5 Bar	
4.5 Calculo para la presión a 2.5 har en el tanque revenorizador	
4.5 Literacionas para $a = 0.60$ a Prosión de 2.5 Par	
4.5.1 netaciones para ψ – 0.00 a riesion de 2.5 Bar	

4.5.2 Iteraciones para $\varphi = 0.70$ a Presión de 2.5 Bar	46
4.5.3 Iteraciones para $\varphi = 0.80$ a Presión de 2.5 Bar	47
4.5.4 Iteraciones para φ =0.90 a Presión de 2.5 Bar	48
4.6 Calculo para la presión a 3.0 bar en el tanque revaporizador	49
4.6.1 Iteraciones para $\varphi = 0.60$ a Presión de 3 Bar	55
4.6.2 Iteraciones para φ =0.70 a Presión de 3 Bar	56
4.6.3 Iteraciones para φ =0.80 a Presión de 3 Bar	
4.6.4 Iteraciones para φ =0.90 a Presión de 3 Bar	
4.7 Análisis de los escenarios a presión variable	59
4.8 Indicadores energeticos	61
4.8.1 Flujo de caja del proyecto	61
4.9. Discusiones	62
5. Conclusiones	65
6. Recomendaciones	66
7. Referencias bibliográficas	67
8. Linkografías	68
9. Anexos	69

Índice de tablas

Tabla 01. Datos de fabricación de calderos	18
Tabla 02. Datos técnicos de cocinadores	18
Tabla 03. Datos técnicos específicos de secadores rotadiscos	18
Tabla 04. Datos técnicos específicos de secadores rotatubos	19
Tabla 05. Componentes de sistema de separadora y pama	19
Tabla 06. Componentes de sistema de tanque flash	19
Tabla 07. Relación de equipos que producen condensados	26
Tabla 08. Correlaciones y constantes de la ecuación de Antoine,	
para el agua	29
Tabla 09. Correlaciones y constantes de la ecuación de Antoine,	
para el Nitrógeno	30
Tabla 10. Correlaciones y constantes de la ecuación de Antoine,	
para el Oxigeno	30
Tabla 11: Valores de constantes de equilibrio calculados para	
cada componente	32
Tabla 12: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 1.5 bar	35
Tabla 13: Cálculos para fracción vaporizada a $\varphi = 0.7$ a Presión de 1.5 bar	36
Tabla 14: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 1.5 bar	37
Tabla 15: Cálculos para fracción vaporizada a $\varphi = 0.9$ a Presión de 1.5 bar	38
Tabla 16. Correlaciones y constantes de la ecuación de Antoine,	
para el agua	40
Tabla 17. Correlaciones y constantes de la ecuación de Antoine,	
para el Nitrógeno	40
Tabla 18. Correlaciones y constantes de la ecuación de Antoine,	
para el oxigeno	41
Tabla 19: Valores de constantes de equilibrio calculados	
para cada componente	42

Tabla 20: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 2.5 bar	45
Tabla 21: Cálculos para fracción vaporizada a $\varphi = 0.7$ a Presión de 2.5 bar	46
Tabla 22: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 2.5 bar	47
Tabla 23: Cálculos para fracción vaporizada a $\varphi = 0.9$ a Presión de 2.5 bar	48
Tabla 24. Correlaciones y constantes de la ecuación de Antoine,	
para el agua	49
Tabla 25 Correlaciones y constantes de la ecuación de Antoine,	
para el Nitrógeno	50
Tabla 26. Correlaciones y constantes de la ecuación de Antoine,	
para el oxigeno	50
Tabla 27: Valores de constantes de equilibrio calculados para	
cada componente	52
Tabla 28: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 3 bar	55
Tabla 29: Cálculos para fracción vaporizada a $\varphi = 0.7$ a Presión de 3 bar	56
Tabla 30: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 3 bar	57
Tabla 31: Cálculos para fracción vaporizada a $\varphi = 0.9$ a Presión de 3 bar	58
Tabla 32. Resumen de coeficientes φ y % de errores (e %)	59
Tabla 33. Cálculo del flujo de caja del proyecto con duración de 10 años	61
Tabla 34. Resumen de indicadores económicos	61

Índice de figuras

Resumen

La presente investigación denominada Modelo termodinámico flash isotérmico bifásico para evaluar el sistema de vapor flash de condensados de secadores y cocinas en la planta pesquera Copeinca S.A-Chimbote-2022, tuvo como objetivo realizar el análisis mediante un modelo matemático el escenario de operación de un tanque flash sometido a presiones de expansión variable.

El método utilizado consistió en la teoría de modelo termodinámico flash isotérmico bifásico que consiste en iterar sobre las presiones parciales que ejercen cada componente presente en el tanque revaporizador teniendo al vapor, el oxígeno y el nitrógeno como agente de análisis.

El modelo se realizó con un software como herramienta para poder encontrar los valores al momento de aplicar la tasa de formación de vapor arrojando los errores en porcentaje.

A distintas presiones (1.5 a 3 Bar) se calcula flujos de vapor que se ha obtenidos a partir de cantidades de condensado, estos se han calculado desde una fracción de 0.5 a 0.9.

Finalmente, la investigación se verifico lo que se propuso en la investigación.

Palabras clave: Condensado, modelo termodinámico, sistema flash

Abstract

The present investigation called Two-phase isothermal flash thermodynamic model to evaluate the condensate flash steam system of dryers and kitchens at the Copeinca S.A-Chimbote-2022 fishing plant, aimed to carry out the analysis using a mathematical model of the operating scenario of a flash tank subjected to variable expansion pressures.

The method used consisted of the two-phase isothermal flash thermodynamic model theory which consists of iterating over the partial pressures exerted by each component present in the flash tank, having steam, oxygen and nitrogen as the analysis agent.

The model is made with software as a tool to be able to find the values at the time of applying the steam formation rate, giving the errors in percentage.

At different pressures (1.5 to 3 Bar) the steam flows that have been obtained from condensate quantities are calculated, these have been calculated from a fraction of 0.5 to 0.9.

Finally, the research verified what was proposed in the research.

Keywords: Condensate, thermodynamic model, flash system

CAPÍTULO I INTRODUCCIÓN

1.1 Antecedentes

Quirola, D. (2017) en su tesis. *Diseño e implementación de un sistema de recuperación de energía a partir de purgas laterales, condensados y vapor flash para el calentamiento de agua en procesos industriales*, tuvo como objetivo diseñar un sistema de recuperación de energía usando fluidos térmicos residuales en un sistema de expansión flash. La metodología empleada consistió en utilizar el balance de energía y correlaciones de termodinámica y transferencia de calor asimismo para el diseño mecánico de la estructura del tanque utilizo las ecuaciones del código ASME VIII. Los resultados encontrados señalan que el sistema flash en la que obtuvo utilizo vapor flash para precalentamiento hasta 61.5 °C para uso sanitario y el ahorro de combustible y consumo de agua para la generación de vapor. Concluyeron que las relaciones de consumo de combustible y consumo de agua para la semana 50 (15ta semana de implementación del sistema). Aumentando la generación de vapor por m3 de agua en un 130 %.

Ramos, J. y Valle, K. (2019), Influencia de un Sistema de Vapor Flash en el Área de Secado para la reducción del consumo de combustible en la planta de harina Copeinca Chancay, 2019. Tuvo como objetivo Evaluar la influencia de un sistema de vapor flash en el área de secado para reducir el consumo de combustible en planta, además determinar el consumo energético de equipos de cocción, secado y PAMA, además del vapor flash generado y determinar los indicadores energético, económicos y ambientales. La metodología de investigación utilizada es descriptiva y aplicada y su análisis se basó en la aplicación de la primera ley de la termodinámica a través del balance de materia y energía y la aplicación de la NTP.350.300.2008 método de balance de energía y eficiencia en calderas pirotubulares. Los resultados encontrados señalan la producción de vapor flash genera una ganancia de energía útil energía que puede ser aprovechada, equivalente a 217,08 BHP; este flujo energético equivale a un ahorro de 239,55 m3/h de gas natural para una velocidad de planta de 168 ton/h. Las conclusiones señalan se obtiene una mejora de los indicadores térmicos, energéticos, económicos y ambientales, quedando demostrado con los resultados obtenidos. Asimismo, a partir de estos indicadores, se demostró que con el sistema de vapor flash se tiene una disminución en la ratio de consumo de combustible de 5.70353 m³/Ton Harina, lo que equivale a una reducción porcentual de

3.68%, valor superior al 3% planteado en la hipótesis. Esta reducción de consumo de combustible representa un ahorro económico anual de USD 94 975.

Urcia, G. y Zavaleta, J. (2016), Implementación de un Sistema Vapor Flash para reducción del consumo de vapor en el Área de Cocción – Empresa Pesquera Centinela S.A.C. Tuvo como objetivo evaluar la implementación de un sistema de vapor flash para reducir el consumo de vapor en el área de cocción, asimismo evaluar la situación actual de consumo vapor, además de estimar las dimensiones del tanque flash y evaluar su implementación en base a la rentabilidad económica. Los tesistas aplicaron la metodología correlacional, aplicado y los cálculos se han basado en el método de diseño del manual técnico de Spirax sarco y los fundamentos de la termodinámica, específicamente para balance de materia y energía. Logrando unos resultados en el consumo de vapor reduciendo en un 11,24% en el área de cocción, permitiendo esto un ahorro de combustible de 29,36 Gal/h de petróleo R-500 equivalente a un ahorro económico de 98356,0 U\$, también se determinaron las dimensiones principales de los tanques flash. Obtuvieron valores obtenidos del VAN, TIR, NPER, el VAN reporta un valor de \$514561.89, TIR es de 323.0%, el númerode periodo de repago (NPER) de 0.31 años. Concluyendo con un sistema de vapor flash a partir de los condensados de los secadores a vapor, se obtiene una mejora de los indicadores térmicos, energéticos, económicos y ambientales, quedando demostrado los resultados obtenidos. Asimismo, a partir de estos indicadores, se demostró que con el sistema de vapor flash se tiene una disminución en la ratio de consumo de combustible de 5.70353 m3/Ton Harina, lo que equivale a una reducción de 3.68%, valor superior al 3% planteado en la hipótesis.

Custodio, J. y Solís, E. (2017), Evaluación del sistema de recuperación de purgas de fondo y de nivel de las calderas pirotubulares en la empresa pesquera Austral Group S.A.A.-Coishco. Tuvo como objetivo evaluar el sistema de recuperación de purgas de fondo y de nivel de las calderas, además de diseñar y seleccionar el sistema de recuperación de calor mixto de purgas, determinar la cantidad de calor recuperado y combustible ahorrado, y evaluar la factibilidad del sistema. En esta presente tesis el método de investigación es descriptiva y aplicativa, basado en el uso de balance de energía de la primera ley de la termodinámica y el uso de manuales técnicos de diseño de sistemas de purgas proveída de Spirax Sarco y Angstroms. Obteniendo resultados en el análisis económico del sistema de recuperación de purgas de fondo y de nivel de las calderas pirotubulares, se observa que los ingresos anuales por la generación de vapor flash a 7.5 PSI es \$ 12568.51, los ingresos por la recuperación de calor que sede el condensado de purgas de tanque flash al flujo de agua de alimentación de las 07 calderas mediante el intercambiador de placas es \$ 10706.26 y los ingresos por la disminución del porcentaje de CO2 emitido al medio ambiente es \$ 3885.75. Siendo estos ingresos adecuados para que el proyecto a implementar sea económicamente rentable. Los tesistas concluyeron que en un Sistema de Recuperación de Purgas obtenían una eficiencia de las siete calderas del 85 %, generando un flujo de condensado de purgas de 9 617.33 Kg/h a una presiónde 120 psia, que genera un flujo de vapor flash de 1 206.01 Kg/h a una presiónde 7.5 psia. Determinaron la tasa interna de retorno (TIR) de 52.5%, un periodo de repago de inversión de 23 meses y la relación Beneficio- Costo(B/C) del proyecto de 2.68. Esta evaluación del sistema permitió ahorrar17632.40 Gal R-500/año, creando así una mejora en el proceso de producción de vapor, alcanzando una mayor eficiencia de la Planta y un proyecto rentable.

León D. (2009), Ahorro Energético con la producción de vapor flash a través de los condensados recuperados de proceso en laempresa Copeinca - Huarmey. Tuvo como objetivo evalúa el ahorro energético con la producción de vapor flash a través de condensados recuperados, asimismo cuantificar el flujo de condensados y la generación de vapor flash a 4 niveles de presión y mejorar los indicadores energéticos y económicos. Metodológicamente los tesistas emplean el tipo descriptiva y aplicada y los cálculos térmicos y mecánicos se balaron en aplicación de balance de energía y materia y diseño de recipientes a presión ASME, y catálogos de fabricantes comerciales de tanques flash. Los resultados adquiridos indica una mejora los Indicadores Energéticos y Económicos en el orden del 4,12 % en toda la

Planta, estableciendo de que la Instalación de un Sistema de Generación de Vapor Flash es rentable energética y técnicamente. La línea de secado a vaporSD tiene una mejora de 5,08 % y la línea de secado a fuego Directo FD una mejora de 3,43%. Teniendo una conclusión que a través de producción de vapor flash secuantifica la generación de vapor flash a 4 niveles de presión: 3,0; 2,5; 2,0 y 1,5kgf/cm2, obteniéndose que es mucho más rentable técnico y económicamente la generación de vapor flash a 1,5 kgf/cm².

Liñan (2020) en su tesis auditoria energética del sistema térmico de la empresa Papelsa-Lima. En esta investigación se determina que el promedio de la eficiencia térmica es del 79%, mejorando hasta un 80%. La empresa tiene la capacidad instalada de 13 996,67 kg/h alimentadas por 3 calderas pirotubulares, donde las pérdidas son representadas respectivamente como: vapor de purgas, 76 837,44 Kg (2,61 %), vapor 5 para tanques flash 44 650,41 kg (1,52%) y en reposición 539 000 kg (18,30%). Mediante la auditoria térmica aplicada, se evalúa unas pérdidas financieras de 187 325,42 USD al año y una ganancia de 201 336,78 USD con una inversión proyectada de 195 389,75 USD

Carrizales, O. (2022). Efecto del dimensionamiento de tanque flash para el ahorro de consumo en la empresa pesquera Cantabria, Coishco, Ancash, tuvo como objetivo dimensionar el tanque flash para el ahorro de consumo de vapor para la empresa pesquera Cantabria. Metodológicamente los tesistas aplicaron balance de materia y energía, así como de cálculos dimensionales usando la Norma ASME. Obteniendo unos resultados que indican que se tiene un D=6 pulg para tubería de ingreso de cocinas, en secadores rotadisco de 4 pulgadas, para condensados de secador rotatubo 4 pulgadas y diámetro de salida de vapor flash de 18 pulgadas, diámetro de salida de condensados de 8 pulgadas, diámetro de tanque flash de 800 mm y la altura de tanque flash de 3200 mm, un área de tanque flash de 9,048 m² y un volumen de tanque flash de 1,61 m³. Concluyendo que se ahorró 1595,362 kg/h de vapor, lo que equivale a 6,6% de ahorro porcentual con respecto al consumo de 24 162,24 kg vapor/h para el cocinado de 15,111 ton/h de materia prima, el calor ganado con el tanque flash es de 117,086 BHP y un ahorro de combustible de 40,736 gal/h en el área de cocinado y 558 896,243 gal/año de combustible R500 ahorrados en la planta, lo cual significa 4,376% de ahorro, el análisis económico determina un VAN=540 713,157 USD y una TIR =139%, además la rentabilidad de 275% y un PAYBACK de 0,36 años(4 meses).

1.2 Formulación del problema

El desarrollo de este proyecto de investigación, se fundamenta en la identificación y caracterización de la problemática orientado a mejorar el aprovechamiento del vapor flash mediante el uso del modelo termodinámico flash isotérmico bifásico para encontrar las condiciones termodinámicas reales de operación del sistema flash y proponer la mejora en cuanto a los cálculos del sistema con mayor aprovechamiento energético para el área de PAMA y Separadora, por lo cual se formula el problema de la siguiente manera.

¿Al aplicar el modelo termodinámico flash isotérmico bifásico, en qué porcentaje varía el flujo másico de vapor producido al evaluar el sistema flash de secadores y cocinas en la planta pesquera Copeinca S.A., Chimbote-2022?

1.3 Objetivo general

Aplicar el modelo termodinámico flash isotérmico bifásico para evaluar el sistema de vapor flash de condensado de secadores y cocinas en la planta pesquera Copeinca S.A, Chimbote-2022

1.4 Objetivos específicos

-Establecer los parámetros termodinámicos de balance de energía y materia de los condensados de secadores y cocinas.

-Aplicar la teoría de estado y equilibrio de fases a los componentes de condensados de secadores y cocinas.

-Evaluar la producción de vapor flash usando el modelo bifásico

-Calcular los indicadores energéticos del sistema actual de vapor flash

1.5 Hipótesis

El modelo termodinámico flash isotérmico bifásico, varia hasta 3% al evaluar el sistema de vapor flash de condensado de secadores y cocinas en la planta pesquera Copeinca S.A., Chimbote-2022?

1.6 Justificación y limitaciones del trabajo

1.6.1 Justificación

El sector pesquero mundial presenta cada vez propuesta de mejoras para sus procesos internos que se relacionan a la materia prima de trabajo y los recursos que dispone para obtener sus productos, dentro de las mejoras está el uso óptimo de los energéticos y los equipos en planta. Las técnicas de ingeniería que se aplican para mejorar la productividad y economía de la actividad está relacionada a los sistemas integrados de gestión , las cuales alinean las metas gerenciales y productivas de una industria y el concepto de ahorro de energía es el indicador supremo para relacionar el gasto energético por unidad de producto , ahora los mecanismo relacionados a generación de energía térmico así como su distribución asocia a factores de uso y calidad combustible así como factores tecnológicos para su disponibilidad tal es así que se invierte en mantenibilidad de los equipos así como las mejoras de uso de calor .El sistema de recuperación de condensados para expansión y obtención de flash es una de las técnicas muy viables y que resulta con múltiples beneficios.

En el contexto nacional el sector de la industria pesquera tuvo una caída en su producción del 21.5%, según el INEI, debido a que la pesca marítima se redujo en 20.9% y la pesca continental en 27.5%, así mismo el resultado también afecto a las exportaciones. Según el reporte de SUNAT, para el primer semestre del 2022, las exportaciones del sector pesquero lograron US\$ 2,035 millones , un 4.7% menos en relación con el primer semestre del 2021, cabe resaltar que las exportaciones pesqueras tradicionales y no tradicionales fueron US\$ 1,187 millones y US\$ 847 millones respectivamente, entre los productos tradicionales se exportaron US\$ 968 millones en harina de pescado y US\$ millones en aceite de pescado, con lo que se evidencio una caída del 7.3% y el 22.2% , respectivamente en comparación al primer semestre del 2021, (Comexperu, 2022).

Sin embargo la situación actual de las plantas pesqueras exige que el recurso pesquero así como los procesos desarrollados en planta sean optimizados con énfasis en identificar, controlar la forma en que se utilizan los equipos, y combustibles en la producción de calor así como la reutilización o aprovechamiento de flujos con alta capacidad térmica, en ese contexto la investigación tiene como propuesta aplicar el modelo termodinámico flash bifásico para evaluar el sistema actual que funciona en planta, con el fin de conocer el rendimiento actual de la producción de flash, el tamaño o capacidad del tanque y la red de distribución de vapor flash, esta propuesta permitirá determinar la posibilidad de optimizar el diseño actual con la meta de obtener ahorros de energía y a la vez de vapor vivo que se consume de las calderas, por lo tanto la investigación se dirige a la evaluación del sistema de vapor flash que dispone de condensados que se obtienen de secadores rotadiscos, secadores rotatubos y cocinas.

1.7 Limitaciones de la investigación

Las limitaciones son los gases que existen dentro del tanque de vapor flash, el cual se tomó únicamente para poder aplicar el modelo termodinámico las sustancias puras como por ejemplo el aire y nitrógeno.

La limitación es el coeficiente de fracción de vaporización a partir del 0.5 por lo que la fórmula de Richford -Rise indica que ese debe ser el primer valor tomado para evaluar hacia adelante.

<u>CAPÍTULO II</u> MARCO TEÓRICO

2.1 El vapor

El vapor es un medio muy eficiente y fácilmente controlable de transportar energía.En entornos industriales, este transporte se realiza entre una localización central (caldera) hasta un número variable de puntos donde se utiliza esa energía en formade calor para aumentar la temperatura del aire, de agua o en otros procesos industriales, Sincal (2022).

Figura 1: Sistema de transporte de vapor en industria

2.2. Vapor como fuente de energía

Es el vapor ampliamente usado en las plantas de generación eléctrica y para aplicaciones industriales de gran tamaño.

Vapor como fuente de calor:

Calentamiento directo:

Se refiere al proceso en el cual el vapor está en contacto directo con el producto que está siendo calentado.

Calentamiento indirecto:

Se refiere a los procesos en donde el vapor no entra en contacto directo con el producto a calentar.

2.3 Condensado

Es el líquido formado cuando el vapor pasa de fase gaseosa a líquido, en un proceso de calentamiento, el condensado es el resultado del vapor que transfirió parte de su energía calorífica, conocida como calor latente, al producto, línea o equipo (TLV,2022).

Figura 2: Sistema de drenado de condensados

Figura 3: Sistema de recolección de condensados

Descripción de diagrama de proceso de uso de condensados en planta

2.4 Primera ley de la termodinámica

Según Yunus & Cengel, se considera a la primera ley de la termodinámica como el principio de la conservación de la energía.

- 2.5 Fundamento de balance de materia y energía
 - Balance de materia

El principio general de un balance de masa, en cada equipo por el que pasa materia prima se debe de cumplir con la ley de conservación de la masa, porlo que la cantidad total de masa que entra a un equipo debe ser igual tanto en la entrada como en la salida, Cengel, Y. A., & Boles, M. A. (2012).

Balance de energía

El balance de energía determina los flujos de energía, sistema de gran importancia para el área de diseño y operación de equipos y procesos.

$$\dot{Q}_{entrada} = \dot{Q}_{salida}$$
 (1)

2.6 Modelo termodinámico

Yunus & Cengel (2002), indican que los modelos termodinámicos son desarrollos matemáticos establecidos que permiten evaluar el comportamiento termodinámico de una sustancia pura o de una mezcla en diversas condiciones o fases de un fluido, entre los modelos especiales usado en la industria se tiene a la de Chao-Seader, API sour-water method, ecuaciones de estado como la de Peng Robinson, Redlich-Kwong-Soave, ideal gas law, Predictive SRK, entre otros.

Martin, P (2022), indica que un modelo termodinámico trata de determinar las propiedades fisicoquímicas, termodinámicas y de transporte de los componentes de un fluido que se mezclan, mediante modelos matemáticos trabajan usando ecuaciones de estado, modelos de coeficientes de actividad y modelos especiales o sea correlaciones teóricas y empíricas específicamente en condiciones donde sus componentes sistema polares o no polares operen a presiones menores a 10 bar.

2.7 Modelo termodinámico flash isotérmico bifásico

Figura 4: Diagrama de corrientes de fluidos en sistema de tanque flash

Descripción de diagrama de corrientes de fluidos en sistema de tanque flash Fuente: https://pyther.readthedocs.io/es/latest/Flash_isotermico.html Ecuación de Antoine

$$Ln(P) = A - \frac{B}{T+C}$$
 02

Ley de Raoult

$$y_i P = x_i P_{i,sat} 03$$

Balance global

$$F = V + L 04$$

Balance por componente

$$F * z_i = V * y_i + L * x_i 05$$

Función o relación de equilibrio

Representa la proporción de composición de vapor respecto a la composición del líquido para cada componente.

$$k_i = \frac{y_i}{x_i} \tag{06}$$

Referente a la ecuación de Raoult

$$k_i = \frac{p_{sat,i}}{p} \tag{7}$$

Método De Newton Rhapson

Definir estados de F, z , T y P

Estimar el valor de las constantes de equilibrio K_i mediante Ley de Raoult a T y P del flash.

$$\log_{10}(P_i^{\ s}) = A_i - \frac{B_i}{T + C_i}$$
 08

$$K_i = \frac{P_i^s}{P} \tag{9}$$

Asumiendo un valor para la fracción vaporizada $0 < \varphi < 1$

$$\varphi = 0.5 \qquad \qquad 10$$

Estimación del valor de la ecuación de Richford -Rise $f(\varphi)$

$$f(\varphi) = \sum_{i=1}^{\infty} \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$
 11

Estimación del valor de la derivada de la ecuación de Richford-Rise $f(\varphi)$

$$f'(\varphi) = \sum \frac{z_i (1 - K_i)^2}{[1 + \varphi(K_i - 1)]^2}$$
 12

Cálculo del nuevo valor de la fracción vaporizada $(\varphi)_N$

$$(\varphi)_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$$
 13

Cálculo del error entre el valor propuesto y el valor calculado de la fracción vaporizada

$$e = \left| \frac{(\varphi)_N - \varphi}{(\varphi)_N} \right|$$
 14

e < 0.001

a. Si , $(\varphi)_N$, es la solución de la ecuación de Rachford-Rise. Calcular flujos de salida y composición.

$$V = (\varphi)_N F \tag{15}$$

$$L = F - V$$
 16

$$(x)_{i} = \frac{z_{i}}{1 + (\varphi)_{N}(K_{i} - 1)}$$
 17

$$y_i = K_i x_i \tag{18}$$

2.8 Indicadores energéticos

Los indicadores son elaborados en función de la planta consumidora en análisis, ya sea de producción o de servicios. Se pueden elaborar en función de los costos de facturación del insumo energético utilizado en forma horaria, mensual o anual.

Indicadores energéticos

Son usados para determinar la eficiencia energética de los procesos y operaciones y de esa manera determinan el potencial de ahorro de energía.

Indicadores económicos

Son indicadores que tiene como parámetro de comparación al costo de facturación del insumo energético consumido en relación al parámetro de producción.

2.9 Evaluación económica

Valor actual neto

El VAN es un indicador financiero que mide los flujos de los ingresos y egresos futuros que tendrá un proyecto, para determinar, si luego de descontar la inversión inicial, queda alguna ganancia. El VAN es un indicador financiero que mide los flujos de los ingresos y egresos futuros que tendrá un proyecto, para determinar, si luego de descontar la inversión inicial, queda alguna ganancia.

Tasa interna de retorno

La TIR está definida como la tasa de interés con la cual el valor neto (VAN) de una inversión sea igual a cero (VAN=0). Es un indicador de rentabilidad relativa del proyecto.

Periodo de repago

Este indicador permite conocer el periodo en que la inversión realizada se recuperara, sin considerar la actualización del dinero.

Rentabilidad

Es un indicador que permite conocer el porcentaje que representa el ahorro anual neto, respecto a la inversión inicial, tomándose en cuenta la vida útil estimada del proyecto.

CAPÍTULO III MATERIALES Y MÉTODOS

3.1 Materiales Equipos

Calderos						
	CALDERO N°1	CALDERO N°2	CALDERO N°3	CALDERO N°4	CALDERO N°5	CALDERO N°6
Marca	Jhonston Boyler	Jhonston Boyler	Jhonston Boyler	Jhonston Boyler	Jhonston Boyler	Jhonston Boyler
Modelo	PFTA1200- 4HG-200S	PFTA1200- 4HG-200S	PFTA1500- 4HG-150S	PFTA1800- 3HG-150S	PFTA180S- 3HG-150S	PFTA180S- 3HG-150S
Potencia	1200 BHP	1200 BHP	1500 BHP	1800 BHP	800 BHP	800 BHP

Tabla 1: Datos de fabricación de calderos

Tabla 2: Datos técnicos de cocinas

Cocinas						
COCINA COCINA COCINA COCINA N°1 N°2 N°3 N°4					COCINA N°5	
Marca	Inemec	Inemec	Stord	Fabtech	Fabtech	
Modelo	Mixto	Mixto	SS160 14	CI - 11616 - 30 - 1S	CI - 11616 - 30 - 1S	
Capacidad	50 TM/HR	50 TM/HR	50 TM/HR	50 TM/HR	50 TM/HR	
Diámetro	1218 mm	1220 mm	1535 mm	1562 mm	1562 mm	
Longitud	13000 mm	13250 mm	13160 mm	14650 mm	14650 mm	

Tabla 3: Datos específicos de secadores rotadiscos

Secadores rotadiscos					
	ROTADISK N°1	ROTADISK N°2	ROTADISK N°3	ROTADISK N°4	
Marca	ATLAS FIMA	ATLAS FIMA	ATLAS FIMA	ATLAS FIMA	
Modelo	ADD 1968	ADD 1968	ADD 1968	ADD 1968	
Capacidad	3,500 Kg/h	3,500 Kg/h	3,500 Kg/h	3,500 Kg/h	
Rpm	12	12	12	12	
Diámetro	2240 mm	2240 mm	2240 mm	2240 mm	
Longitud	9500 mm	9500 mm	9500 mm	9500 mm	

Tabla 4: Datos específicos de secadores rotabubos

Secadores Rotativos					
ROTATUBO N°1 ROTATUBO					
Marca	FIMA	FIMA			
Modelo	RTD3522-22	RTD3522-22			
Capacidad	acidad 8,000 Kg/h				
Rpm	7.5				
Diámetro	3500 mm	3500 mm			
Longitud	1930 mm	1930 mm			
Numero de tubos	192				
Consumo nominal de vapor (Kg Vapor/h)}	14130 kg vapor/hr				
Presión	6 bar				
Temperatura 100 °C					

Tabla 5: Componentes de sistema de separadora y Pama

Pama y Separadora	
Capacidad de celda DAF físico	250 m^3
Capacidad tanques de separadoras	1.5 m ³
Capacidad tanques de pama	1.6 m ³
Tipo de polímero	Polychem PA 8130V

Tabla 6: Componentes de sistema de tanque flash

Tanque Flash	
Altura	122 cm
Diámetro	65 cm
Espesor	plancha de 1/4"
Capacidad Rotadisk	0.4 m ³
Capacidad Rotatubo	0.4 m ³

Figura 5: Sistema de tanque flash

Figura 6: Conexión de entrada y salida de tanque flash

Figura 7: Intercambiadores de calor de placas

3.2 Método de trabajo

Investigación cuantitativa

La investigación cuantitativa, también llamada empírico-analítico, racionalista o positivista es aquel que se basa en los aspectos numéricos para investigar, analizar y comprobar información y datos. Diversos autores han definido lo que es la investigación cuantitativa, así tenemos.

Según Landeau (2007) y Cruz, Olivares, & González (2014) la investigación cuantitativa pretende establecer el grado de asociación o correlación entre variables, la generalización y objetivación de los resultados por medio de una muestra 70 David Alan Neill; César Quezada Abad; Juana Arce Rodríguez permite realizar inferencias causales a una población que explican por qué sucede o no determinado hecho o fenómeno.

Método de investigación aplicada

Para Murillo (2008), la investigación aplicada recibe el nombre de "investigación práctica o empírica", que se caracteriza porque busca la aplicación o utilización de los conocimientos adquiridos, a la vez que se adquieren otros, después de implementar y sistematizar la práctica basada en investigación. El uso del conocimiento y los resultados de investigación que da como resultado una forma rigurosa, organizada y sistemática de conocer la realidad.

Las prácticas, entendidas como investigación aplicada, son experiencias de investigación con propósitos de resolver o mejorar una situación específica o particular, para comprobar un método o modelo mediante la aplicación innovadora y creativa de una propuesta de intervención, en este caso de índole Orientadora, en un grupo, persona, institución o empresa que lo requiera. Por su parte,

Boggino y Rosekrans (2004) y Cívicos y Hernández (2007) mencionan la investigaciónacción y la investigación participativa como aquellas que responden a aplicaciones, de ahí que sean vistas como prácticas de investigación diferentes de la investigación práctica aplicada.

3.3 Población y muestra

3.3.1 Población

La población está conformada por el sistema de recolección de condensados de la planta de procesamiento de harina de pescado de la empresa Copeinca S.A, Chimbote.

3.3.2 Muestra

Está conformada por la línea de retorno de condensados de cocinadores y secadores de la planta de producción de harina de pescado de la Empresa Copeinca S.A, Chimbote.

3.4 Técnicas e instrumentos

El diseño de la investigación es pre experimental, con lo cual el investigador se aproxima hacia una investigación experimental pero no se cuenta con los medios de control suficientes que permitirían una validez. Se midió el mismo sujeto (rendimiento de planta), realizando balance en el sistema de recuperación de condensados de cocinas y secadores de la planta de harina de pescado de Copeinca S.A

O1: Condensados de cocinas y secadores

O₂: Vapor flash

X: Modelo termodinámico flash isotérmico bifásico

G.E: Tasa de revaporizado con sistema flash convencional

Diseño de experimento

El diseño del experimento cosiste en un sistema que representa la captación de condensados de secadores y cocinas para ingresarlo a un tanque revaporizador flash y obtener vapor de expansión para aplicaciones en el PAMA y separadora ambiental.

Figura 8: Descripción de diagrama de proceso de uso de condensado en planta

El proceso de análisis para el diseño experimental consiste en las siguientes etapas.
Secuencia del proceso de cálculo usando el método termodinámico bifásico flash

Ecuación de Rachfor-Rise

$$\sum \frac{Z_i(1-K_i)}{1+\varphi(K_i-1)}$$

- 1. Se tiene F, Zi, T y P
- Cálculo de valor de constantes de equilibrio K_i Ley de Raoult a T y P del vapor flash
- 3. Suponer un valor para fracción vaporizada entre $0 < \varphi < 1$

$$\varphi = 0.5$$

4. Cálculo de valor de la ecuación de Rachfor-Rise $f(\varphi)$

$$f(\varphi) = \sum \frac{Z_i(1-K_i)}{1+\varphi(K_i-1)}$$

5. Cálculo del valor de la derivada de la ecuación de Rachfor-Rise $f'(\varphi)$

$$f'(\varphi) = \sum \frac{Z_i (1 - K_i)^2}{[1 + \varphi(K_i - 1)]^2}$$

6. Calcular el nuevo valor de la fracción de vaporizada φ_N

$$\varphi_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$$

7. Calculando el error entre el valor propuesto y el valor calculado de la fracción vaporizada

$$e = \left|rac{arphi_N - arphi}{arphi_N}
ight|$$

CAPÍTULO IV RESULTADOS Y DISCUSIONES

4.1 Condensado disponible en planta

Equipo -secadores	Capacidad Kg/h	Condensados Kg/s
Secador a Vapor Rotadiscos Nº1 ATLAS-FIMA (ADD 1968)	3,500	1.40
Secador a Vapor Rotadiscos Nº2 ATLAS - FIMA (ADD 1968)	3,500	1.40
Secador a Vapor Rotadiscos Nº3 ATLAS- FIMA (ADD 1968)	3,500	1.40
Secador a Vapor Rotadiscos Nº4 ATLAS - FIMA (ADD 1968)	3,500	1.40
Secador a Vapor Rotatubos Nº1 FIMA	8,000	4.11
Secador a Vapor Rotatubos Nº2 FIMA	8,000	4.11
Equipo -Cocinas	Capacidad Kg/h	Condensados kg/s
Equipo -Cocinas Cocinador a Vapor Mixto No1 INEMEC	Capacidad Kg/h 50,000	Condensados kg/s 0.51
Equipo -Cocinas Cocinador a Vapor Mixto No1 INEMEC Cocinador a Vapor Mixto No2 INEMEC	Capacidad Kg/h 50,000 50,000	Condensados kg/s 0.51 0.51
Equipo -Cocinas Cocinador a Vapor Mixto No1 INEMEC Cocinador a Vapor Mixto No2 INEMEC Cocinador a Vapor Mixto No3 STORD SS-160-14	Capacidad Kg/h 50,000 50,000 50,000	Condensados kg/s 0.51 0.51 0.51 0.51
Equipo -CocinasCocinador a Vapor Mixto No1INEMECCocinador a Vapor Mixto No2INEMECCocinador a Vapor Mixto No3STORD SS-160-14Cocinador a Vapor Mixto No4FABTECH	Capacidad Kg/h 50,000 50,000 50,000 50,000	Condensados kg/s 0.51 0.51 0.51 0.51
Equipo -Cocinas Cocinador a Vapor Mixto No1 INEMEC Cocinador a Vapor Mixto No2 INEMEC Cocinador a Vapor Mixto No3 STORD SS-160-14 Cocinador a Vapor Mixto No4 FABTECH Cocinador a Vapor Mixto No5 FABTECH	Capacidad Kg/h 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000	Condensados kg/s 0.51 0.51 0.51 0.51 0.51 0.51

Tabla 7: Relación de equipos que producen condensados

Fuente: Área de mantenimiento de la empresa

Para el sistema se considerará una mezcla ternaria basado en N_2 , O_2 y agua en fase de condensados, asumiendo que en el tanque flash coexisten las tres sustancias sobre la cual se aplicaran el modelo isotérmico, considerando los coeficientes respectivos y la proporción en la que participa cada elemento al ingresar al tanque revaporizador flash.

$$S = 16.37 \frac{kg}{s}$$
$$S = 58 932 \frac{kg}{h}$$

Identificando las proporciones en las que ingresara al tanque revaporizador, nos basamos en el modelo de ecuación de Antoine.

$$F = L + V + W$$

Donde:

L: cantidad de sustancia de agua en estado de condensado

V: cantidad de sustancia de oxígeno presente en el aire al interior del tanque flash

W: cantidad de sustancia de nitrógeno presente en el aire al interior del tanque flash

Importante:

Las sustancias del aire que contiene un aproximado de 21% de O₂ y 79% de N₂ están presentes en forma de gases y coexisten a una presión estable y determinada al interior del tanque revaporizador flash por lo que su influencia en el proceso de formación de vapor flash afecta a la capacidad de formación de flash, considerando el modelo de Dalton (presiones parciales de un sistema termodinámico), hacemos énfasis en que estos gases, si reducen la formación de vapor flash , por lo cual el modelo de flujo bifásico aplica los coeficiente A,B y C de a cada sustancia a fin de medir la capacidad real de producción de vapor flash en un sistema.

El modelo tradicional de cálculo de vapor flash que se usa actualmente para dimensionar los tanques flash usan directamente las propiedades del vapor como única sustancia pura presente en el tanque, por lo que se trabajó sobre estados y propiedades termodinámicas según la presión y temperatura determinando sus entalpias.

Datos de las sustancias que ingresan al sistema de revalorización flash

$$F = L + V + W$$

El tanque se llena al 16% con condensado de agua a la presión de 1.4 barg al interior del tanque flash

L=16% de condensado

V+W= 84%, el aire contiene :(V=21% Oxigeno +W=79% Nitrógeno)

Figura 9: Se muestra la repartición de zona de vapor y zona de condensado del tanque de vapor flash

Se tiene

$$F_{condensado} = \dot{m_c} = 16.37 \frac{kg}{s} * \frac{1mol \ agua}{18gr} * \frac{1000gr}{kg} * \frac{3600s}{h} = 3274000 \frac{mol}{h} = 3274 \frac{kmol}{h}$$

4.2 Cálculo de flujo masico del sistema

Se considera que el espacio contenido para la expansión no es vacío y está lleno de aire, para el cálculo se sume un flujo másico de aire de entrada mínimo del 1% respecto del flujo de condensados calientes que se recupera de cocinas y secadores.

$$F_{Total} = \dot{m_c} + \dot{m_a} = 3274 \frac{kmol}{h} + 1\% * 3274 \frac{kmol}{h} = 3306.74 \frac{kmol}{h}$$

4.3 Modelo flash isotérmico a presión de flujo másico de 3.5 bar

El vapor flash es isotérmico se considera el esquema siguiente

La presión del sistema es de 1.5 bar según datos operativos actuales del tanque flash instalado en planta.

Figura 10: Se muestra las presiones del sistema y la distribución de componentes existentes en el sistema de vapor flash

En general las fracciones de cada componente presente en el tanque revaporizador es la siguiente

 $F = 3306.74 \, kmol/h$ (Flujo total de mezcla que ingresa)

 $(z_1 = 16\%)$: Condensado que ingresa al tanque para la expansión.

 $(z_2 = 84\%(21\% O_2) = 17.64\%$: Es la cantidad de oxigeno presente en el tanque flash,

$$z_2 = 17.64\%$$

 $(z_3 = 84\%(79\% N_2) = 66.36\%$: Es la cantidad de Nitrógeno presente en el tanque flash $z_3 = 66.36\%$,

Ecuación de Antoine

Datos:

P=1.5 bar, por tablas de presión de Moran y Shapiro, termodinámica técnica para ingeniería Tsat= 111.4 °C

$$Ln(P) = A - \frac{B}{T+C}$$

Para el agua en forma de condensado se tiene

$$P = 10^{A - \frac{B}{T + C}}$$

De tablas de obtiene

Tabla 8: Correlaciones y constantes de la ecuación de Antoine, para el agua.

Coeficientes	А	В	С
Agua	5.11564	1687.537	230.171

Fuente: Extraído de tablas de : The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

Reemplazando se tiene

$$P_{condensado} = 10^{\mathrm{A} - \frac{\mathrm{B}}{\mathrm{T} + \mathrm{C}}}$$

$$P = 10^{5.11564 - \frac{1687.537}{111.4 + 230.170}}$$

P = 1.496 mmHg

Para el Nitrógeno se tiene

Tabla 9: Correlaciones y constantes de la ecuación de Antoine, para el nitrogeno.

Coeficientes	А	В	С
Nitrógeno	3.61947	255.680	266.550

Fuente: Extraído de tablas de : The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{A - \frac{B}{T + C}}$$

$$P = 10^{3.61947 - \frac{255.680}{111.4 + 266.550}}$$

P = 876.9572 mmHg

Para el oxígeno se tiene

Tabla 10: Correlaciones y constantes de la ecuación de Antoine, para el oxigeno.

Coeficientes	А	В	С
Oxigeno	3.81634	319.013	266.700

Fuente: Extraído de tablas de : The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{A - \frac{B}{T + C}}$$

$$P = 10^{3.81634 - \frac{319.013}{111.4 + 266.700}}$$

 $P = 938.8873 \, mmHg$

Cálculo de las constantes Ki, para cada componente de los gases

Para agua-estado de condensado

$$K_{i,H_2O(condensado)} = \frac{P_{,cond,i}{}^s}{P}$$

El tanque flash contiene una presión de P=1.5 bar que equivale a 1,480 atm y a su vez equivale a 1124.8 mmHg. (a la presión interna del tanque revaporizador flash).

 $K_{i,H_2O(condensado)} = \frac{1.496\text{mmHg}}{\frac{1124.8 \text{ mmHg}}{1,480 \text{ atm}}} = 0.0019684$

 $K_{i,H_2O(condensado)} = 0.0019684$

Para el Nitrógeno

$$K_{i,N_2} = \frac{P_{,cond,i}{}^s}{P}$$

$$K_{i,N_2} = \frac{876.9572 \text{ mmHg}}{\frac{1124.8 \text{ mmHg}}{1,480 \text{ atm}}} = 1.153$$

Ki, *N*2=1.153

Para el Oxigeno

$$K_{i,O_2} = \frac{P_{,cond,i}{}^{s}}{P}$$

$$K_{i,O_2} = \frac{938.8873 \text{ mmHg}^s}{\frac{1124.8 \text{ mmHg}}{1,480 \text{ atm}}} = 1.235$$

$$K_{i,O_2} = 1.235$$

Las constantes de equilibrio determinadas para cada componente son

Tabla 11: Valores de constantes de equilibrio calculados para cada componente

Componente	K _{i,H2} O(condensado)	<i>K</i> _{<i>i</i>,<i>N</i>₂}	<i>K</i> _{<i>i</i>,<i>0</i>₂}
Valor	0.0019684	1.153	1.235

Suponer el valor de la fracción vaporizada, el valor supuesto se asume del paso de la metodología del paso Nº 03.

Entonces asumiendo un valor para la fracción vaporizada $0 < \varphi < 1$, con la cual iniciaremos la iteración

$$\varphi = 0.5$$

Estimación del valor de la ecuación de Richford -Rise $f(\varphi)$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

Para el condensado

$$f(\varphi)_{H_2O,conden.} = \sum \frac{16\%(1 - 0.0019684)}{1 + 0.5(0.0019684 - 1)}$$

$$f(\varphi)_{H_20,conden.} = 0.3187$$

Para el Nitrógeno

$$f(\varphi)_{N_2, conden.} = \sum \frac{66.36\%(1 - 1.153)}{1 + 0.5(1.153 - 1)}$$

$$f(\varphi)_{H_20,conden.} = -0.0094$$

Para el oxigeno

$$f(\varphi)_{O_2} = \sum \frac{17.64\%(1 - 1.235)}{1 + 0.5(1.235 - 1)}$$

$$f(\varphi)_{O_2} = -0.0370$$

Sumando los valores obtenidos de forma independiente, se tendrá.

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)} = f(\varphi)_{H_2O,conden.} + f(\varphi)_{N_2.} + f(\varphi)_{O_2}$$

$$f(\varphi) = \sum \frac{z_i(1 - K_i)}{1 + \varphi(K_i - 1)} = 0.3187 + (-0.0943) + (-0.0370) = 0.1873$$

El método señala que si el valor de $f(\varphi)$, es igual a cero, entonces ya se hubiera encontrado la solución, sin embargo, se debe continuar con la iteración utilizando métodos numéricos. Del paso anterior, asumiremos que $\varphi = 0.5$, entonces ejecutando la formula de

Estimación del valor de la derivada de la ecuación de Richford-Rise $f(\varphi)'$ y se evalúa esta ecuación ya derivada.

$$f'(\varphi) = \sum \frac{z_i (1 - K_i)^2}{[1 + \varphi(K_i - 1)]^2}$$

Reemplazando para hallar los nuevos valores en la ecuación derivada para los componentes

Para el condensado

$$f'(\varphi) = \sum \frac{16\%(1 - 0.0019084)^2}{[1 + 0.5(0.0019084 - 1)]^2} = 0.6350$$

Para el Nitrógeno

$$f'(\varphi) = \sum \frac{66.36\%(1 - 1.153)^2}{[1 + 0.5(1.153 - 1)]^2} = 0.0134$$

Para oxigeno

$$f'(\varphi) = \sum \frac{17.64\%(1 - 1.235)^2}{[1 + 0.5(1.235 - 1)]^2} = 0.0078$$

_

$$f'(\varphi)_{total} = 0.6350 + 0.0134 + 0.0078 = 0.6561$$

Calculando el nuevo valor de la fracción vaporizada

$$(\varphi)_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$$

Reemplazando los datos

$$(\varphi)_N = 0.5 - \frac{(0.1873)}{0.6561}$$

 $(\varphi)_N = 0.2145$

Cálculo del error entre el valor propuesto y el valor calculado de la fracción vaporizada

$$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$$
$$e = \left| \frac{0.2145 - 0.5}{0.2145} \right| = 1.3308$$

Observamos que el error aún no es menor a 0.001, por lo cual se continúa iterando para un nuevo valor de φ (fracción vaporizada).

4.4 Hoja de cálculo programado para iteraciones

4.4.1 Iteraciones para $\varphi = 0.6$ a Presión de 1.5 bar

Análisis de parámetros del sistema termodinámico flash bifásico con 60% de revaporización del condensado en el tanque flash.

Tabla 12: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 1.5 bar

	φ		0.6			
Describert			E			
Procedimientos	Flujo masico(kmo	DI/N	Fracciones	s comonentes		
			Z1 (cond.)	16%		
1	F	3306.74	Z2 (O2)	17.64%		
			Z3 (N2)	66.36%		
		P(H2O,cond	ensado)mmH	1.4966		
2	Ecuacion de Antoine	P(O2	2mmH)	938.8873		
		P(N2	mmH)	876.9572		
		Ki,	,H20	0.0019684		
3	Constantes de equilibrio	Ki	,02	1.235		
		Ki	, N2	1.153		
4	Fraccion vaporizada	φ		0.6		
	Ecuacion de Richford-Rise	Comp	oonente	Valor		
5	$\sum Z_i(1-K_i)$	f(φ)), H02	0.398037395		
5	$f(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(ự),02	-0.036331288		
		f(ự	o),N2	-0.092993955		
	Sumatoria global	f	(φ)	0.268712152		
ANALISIS	Ecuacion derivada	Elemento				
paco E 1	$\sum z_t (1-K_t)^2$	f'(φ), H02	0.990211048		
paso 5.1	$f'(\varphi) = \sum \frac{1}{[1 + \varphi(K_t - 1)]^2}$	f'(q	o),O2	0.007482781		
		f'(q	o),N2	0.013031760		
	Sumatoria	f'(q)	total	1.010725588		
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{f'(\varphi)}$	0.33413936		
6	$f(\varphi)$	0.268	712152			
	$f'(\varphi)$	1.010	725588			
	φ	(0.6			
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.795657954		

Descripción: Se observa que si se introduce el valor de $\varphi = 0.6$, que equivale al 60% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 79.56%, significa que, al elevar el factor de evaporación en el sistema, el error disminuye.

4.4.2 Iteraciones para $\varphi = 0.70$ a Presión de 1.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 70% de revaporización del condensado en el tanque flash.

Tabla 13: Cálculos	para fracción	vaporizada a φ	0 = 0.7	a Presión	de 1.5 bar
--------------------	---------------	------------------------	---------	-----------	------------

	φ		0.7			
			I			
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes		
			Z1 (cond.)	16%		
1	F	3306.74	Z2 (O2)	17.64%		
			Z3 (N2)	66.36%		
		P(H2O,cond	ensado)mmH	1.4966		
2	Ecuacion de Antoine	P(O2	2mmH)	938.8873		
		P(N2	mmH)	876.9572		
						
		Ki	,H20	0.0019684		
3	Constantes de equilibrio	Ki	,02	1.235		
		Ki	, N2	1.153		
r						
4	Fraccion vaporizada	φ		0.7		
ſ						
	Ecuacion de Richford-Rise	Comp	oonente	Valor		
5	$f(x) = \sum Z_i(1-K_i)$	f(φ)), H02	0.529849954		
	$J(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(q	o),O2	-0.035598111		
		f(q	o),N2	-0.091708789		
	Sumatoria global	f	(φ)	0.402543055		
ANALISIS	Ecuacion derivada	Elemento				
paso 5 1	$z_{i}(x) = \sum_{i=1}^{n} z_{i}(1-K_{i})^{2}$	f'(φ), H02	1.754631089		
	$f'(\varphi) = \sum [1 + \varphi(K_t - 1)]^2$	f'(q	p),O2	0.007183818		
		f'(φ),N2		0.012674054		
	Sumatoria	f'(φ)	total	1.774488961		
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{f'(\varphi)}$	0.473149868		
6	$f(\varphi)$	0.402	543055			
	$f'(\varphi)$	1.774488961				
	φ	(0.7			
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.479446677		

Descripción: Se observa que si se introduce el valor de $\varphi = 0.70$, que equivale al 70% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 47.94%, significa que, al elevar el factor de evaporación en el sistema, el error disminuye.

4.4.3 Iteraciones para $\varphi = 0.80$ a Presión de 1.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 80% de revaporización del condensado en el tanque flash.

Tabla 14: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 1.5 bar

	φ		0.8	
			•	
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
		P(H2O,cond	ensado)mmH	1.4966
2	Ecuacion de Antoine	P(O2	2mmH)	938.8873
		P(N2	mmH)	876.9572
		Ki	H20	0.0019684
3	Constantes de equilibrio	Ki	,02	1.235
		Ki	, N2	1.153
4	Fraccion vaporizada	φ		0.8
	Ecuacion de Richford-Rise	Comp	oonente	Valor
5	$\sum Z_i(1-K_i)$	f(φ), H02	0.792187909
5	$f(\varphi) = \sum \frac{1 + \varphi(K_i - 1)}{1 + \varphi(K_i - 1)}$	f(q),02	-0.034893939
		f(q	o),N2	-0.09045866
	Sumatoria global	f	(φ)	0.66683531
ANALISIS	Ecuacion derivada	Elemento		
paso 5.1	$z_i(x) = \sum \frac{z_i(1-K_i)^2}{(1-K_i)^2}$	f'(φ), H02	3.922260523
	$\int (\varphi)^{2} \sum [1 + \varphi(K_{t} - 1)]^{2}$	f'(q	o),O2	0.006902421
		f'(q	o),N2	0.012330876
	Sumatoria	$f'(\varphi)$	total	3.941493819
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{f'(\varphi)}$	0.630816604
6	$f(\varphi)$	0.66	583531	
	$f'(\varphi)$	3.941	493819	
	φ	().8	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.268197436

Descripción: Se observa que si se introduce el valor de $\varphi = 0.80$, que equivale al 80% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 26.81%, significa que, al elevar el factor de evaporación en el sistema, el error disminuye.

4.4.4 Iteraciones para $\varphi = 0.90$ a Presión de 1.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 90% de revaporización del condensado en el tanque flash.

	φ		0.9	
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
		P(H2O,cond	ensado)mmH	1.4966
2	Ecuacion de Antoine	P(O2	2mmH)	938.8873
		P(N2	mmH)	876.9572
		Ki	,H20	0.0019684
3	Constantes de equilibrio	Ki	,02	1.235
		Ki	, N2	1.153
4	Fraccion vaporizada		φ	0.9
	Ecuacion de Richford-Rise	Comp	oonente	Valor
5	$\int Z_i(1-K_i)$	f(φ), H02	1.56905383
	$J(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(q	o),O2	-0.034217086
		f(q	o),N2	-0.089242155
	Sumatoria global	f	(φ)	1.445594588
ANALISIS	Ecuacion derivada	Elemento		
paso 5.1	$z_i(x_i) = \sum \frac{z_i(1-K_i)^2}{(1-K_i)^2}$	f'(φ), H02	15.387062008
	$f(\phi) = \sum [1 + \phi(K_t - 1)]^2$	f'(q	p),O2	0.006637239
		f'(q	p),N2	0.012001450
	Sumatoria	$f'(\varphi)$	total	15.405700698
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{f'(\varphi)}$	0.806164957
6	$f(\varphi)$	1.445	594588	
	$f'(\varphi)$	15.40	057007	
	φ	(0.9	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.116396827

Tabla 15: Cálculos	para fracción	vaporizada a φ	= 0.9 a	a Presión de	1.5 bar
--------------------	---------------	------------------------	---------	--------------	---------

Descripción: Se observa que si se introduce el valor de $\varphi = 0.90$, que equivale al 90% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 11.63%, significa que, al elevar el factor de evaporación en el sistema, el error disminuye.

Como se observa el análisis, que a medida que se incrementa la tasa de revaporizado del condensado que ingresa al tanque flash, valor iniciado en 0.5, hasta 0.90, permite que la solución converja y las tasas de error se reduzca hasta 11.63% aproximadamente como se observa en esta última iteración.

Con lo cual ya se puede establecer los parámetros válidos para el modelo establecido, el modelo que se ha utilizado sirve de complemento de análisis a la actual operación del sistema de revaprizado con que cuenta la planta, sin embargo, este método alternativo de estudio dará indicios para ver como la tasa de condensado que ingresa al tanque revaporizador se cuándo este va en aumento, desde el 50% hasta 90%, respectivamente.

4.5 Calculo para la presión a 2.5 bar en el tanque revaporizador

En general las fracciones de cada componente presente en el tanque revaporizador es la siguiente $F = 3306.74 \ kmol/h$ (Flujo total de mezcla que ingresa)

(z₁ = 16%): Condensado que ingresa al tanque para la expansión.
(z₂ = 84%(21% O₂) = 17.64% : Es la cantidad de oxígeno presente en el tanque flash,
z₂ = 17.64%
(z₃ = 84%(79% N₂) = 66.36%: Es la cantidad de Nitrógeno presente en el tanque flash

 $z_3 = 66.36\%$,

Ecuación de Antoine

Datos:

P=2.5 bar, por tablas de presión de Moran y Shapiro, termodinámica técnica para ingeniería Tsat= 127.4 °C

$$Ln(P) = A - \frac{B}{T+C}$$

Para el agua en forma de condensado se tiene

$$P = 10^{\mathrm{A} - \frac{\mathrm{B}}{\mathrm{T} + \mathrm{C}}}$$

De tablas de obtiene

Tabla 16: Correlaciones y constantes de la ecuación de Antoine, para el agua

Coeficientes	А	В	С
Agua	5.11564	1687.537	230.171

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

Reemplazando se tiene

$$P_{condensado} = 10^{A - \frac{B}{T+C}}$$
$$P = 10^{5.11564 - \frac{1687.537}{127.4 + 230.170}}$$

$$P = 2.49 \text{ mmHg}$$

Para el Nitrógeno se tiene

Tabla 17: Correlaciones y constantes de la ecuación de Antoine, para el nitrogeno

Coeficientes	А	В	С
Nitrógeno	3.61947	255.680	266.550

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{A - \frac{B}{T + C}}$$

$$P = 10^{3.61947 - \frac{255.680}{127.4 + 266.550}}$$

$$P = 934.229 \text{ mmHg}$$

Para el oxígeno se tiene

Tabla 18: Correlaciones y constantes de la ecuación de Antoine, para el oxigeno

Coeficientes	А	В	С
Oxigeno	3.81634	319.013	266.700

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{\mathrm{A} - \frac{\mathrm{B}}{\mathrm{T} + \mathrm{C}}}$$

$$P = 10^{3.81634 - \frac{319.013}{127.4 + 266.700}}$$

$$P = 1015.939 \, mmHg$$

Cálculo de las constantes K_i, para cada componente de los gases

Para agua-estado de condensado

$$K_{i,H_2O(condensado)} = \frac{P_{,cond,i}^{s}}{P}$$

El tanque flash contiene una presión de P=2.5 bar que equivale a 2.467 atm y a su vez equivale a 1874.9 mmHg . (a la presión interna del tanque revaporizador flash).

$$K_{i,H_2O(condensado)} = \frac{2.49}{\frac{1874.9 \, mmHg}{2.467 \, atm}} = 0.003276 \, atm$$

Para el Nitrógeno

$$K_{i,N_2} = \frac{P_{,cond,i}{}^s}{P}$$

$$K_{i,N_2} = \frac{934.2296 \text{ mmHg}}{\frac{1874.9 \text{ mmHg}}{1874.9 \text{ atm}}} = 1.2293$$

$$K_{i,N_2} = 1.2293$$

Para el Oxigeno

$$K_{i,O_2} = \frac{P_{,cond,i}{}^{s}}{P}$$

$$K_{i,O_2} = \frac{1015.9394 \text{ mmHg}^s}{\frac{1874.9 \text{ mmHg}}{2.467 \text{ atm}}} = 1.3368$$

$$K_{i,O_2} = 1.3368$$

Las constantes determinadas para cada componente son

Tabla 19: Valores de constantes calculados para cada componente

Componente	K _{i,H2} O(condensado)	<i>K</i> _{<i>i</i>,<i>N</i>₂}	<i>K</i> _{<i>i</i>,<i>0</i>₂}
Valor	0.003276	1.2293	1.3368

Suponer el valor de la fracción vaporizada

Asumiendo un valor para la fracción vaporizada $0 < \varphi < 1$, con la cual iniciaremos la iteración

$$\varphi = 0.5$$

Estimación del valor de la ecuación de Richford -Rise $f(\varphi)$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

Para el condensado

$$f(\varphi)_{H_20,conden.} = \sum \frac{16\%(1 - 0.003276)}{1 + 0.5(0.003276 - 1)}$$

$$f(\varphi)_{H_20,conden.} = 0.3179$$

Para el Nitrógeno

$$f(\varphi)_{H_20,conden.} = \sum \frac{66.36\%(1 - 1.2293)}{1 + 0.5(1.2293 - 1)}$$
$$f(\varphi)_{H_20,conden.} = -0.0508$$

Para el oxigeno

$$f(\varphi)_{O_2} = \sum \frac{17.64\%(1 - 1.3368)}{1 + 0.5(1.3368 - 1)}$$
$$f(\varphi)_{O_2} = -0.1364$$

Sumando los valores obtenidos de forma independiente, se tendrá.

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)} = f(\varphi)_{H_2O,conden.} + f(\varphi)_{H_2O,conden.} + f(\varphi)_{O_2}$$

$$f(\varphi) = \sum \frac{z_i(1 - K_i)}{1 + \varphi(K_i - 1)} = 0.3179 + (-0.0508) + (-0.1364) = 0.1305$$

El método señala que si el valor de $f(\varphi)$, es igual a cero, entonces ya se hubiera encontrado la solución, sin embargo, se debe continuar con la iteración utilizando métodos numéricos. Del paso anterior, asumiremos que $\varphi = 0.5$, entonces ejecutando la formula de

Estimación del valor de la derivada de la ecuación de Richford-Rise $f(\varphi)'$ y se evalúa esta ecuación ya derivada.

$$f'(\varphi) = \sum \frac{z_i (1 - K_i)^2}{[1 + \varphi(K_i - 1)]^2}$$

Reemplazando para hallar los nuevos valores en la ecuación derivada para los componentes

Para el condensado

$$f'(\varphi) = \sum \frac{16\%(1 - 0.003276)^2}{[1 + 0.5(0.003276 - 1)]^2} = 0.6316$$

Para el Nitrógeno

$$f'(\varphi) = \sum \frac{66.36\%(1 - 1.2293)^2}{[1 + 0.5(1.2293 - 1)]^2} = 0.0280$$

Para oxigeno

$$f'(\varphi) = \sum \frac{17.64\%(1 - 1.3368)^2}{[1 + 0.5(1.3368 - 1)]^2} = 0.0146$$
$$f'(\varphi)_{total} = 0.6316 + 0.0280 + 0.0146 = 0.6743$$

Calculando el nuevo valor de la fracción vaporizada

$$(\varphi)_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$$

Reemplazando los datos

$$(\varphi)_N = 0.5 - \frac{(0.1305)}{0.6743}$$

 $(\varphi)_N = 0.3063$

Cálculo del error entre el valor propuesto y el valor calculado de la fracción vaporizada

$$e = \left| \frac{(\varphi)_N - \varphi}{(\varphi)_N} \right|$$
$$e = 0.6319$$

Observamos que el error aún no es menor a 0.001, por lo cual se continúa iterando para un nuevo valor de φ (fracción vaporizada).

4.5.1 Iteraciones para $\varphi = 0.60$ a Presión de 2.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 60% de revaporización del condensado en el tanque flash.

	φ		0.6	
Procedimientos	Fluio masico(kmo	ol/h	Fracciones	comonentes
			Z1 (cond.)	16%
1	F	3306.74	72 (02)	17.64%
			Z3 (N2)	66.36%
		P(H2O,cond	ensado)mmH	2.4900
2	Ecuacion de Antoine	P(O2	2mmH)	1015.9394
		P(N2	mmH)	934.2296
		Ki,	H20	0.003276
3	Constantes de equilibrio	Ki	,02	1.3368
		Ki	, N2	1.2293
4	Fraccion vaporizada	φ		0.6
	Ecuacion de Richford-Rise	Comp	oonente	Valor
5	$\zeta(x) = \sum_{i=1}^{n} Z_i (1-K_i)$	f(φ)), H02	0.396739712
	$f(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(ự),02	-0.049421072
		f(ự	o),N2	-0.133741505
	Sumatoria global	f	<u>(</u> φ)	0.213577135
ANALISIS	Ecuacion derivada	Elemento		
paso 5 1	$f'_{i}(x) = \sum_{i} z_{i}(1 - K_{i})^{2}$	f'(φ), H02	0.983764992
	$\int (\varphi) = \sum \frac{1}{[1 + \varphi(K_i - 1)]^2}$	f'(q	o),O2	0.013846045
		f'(q	o),N2	0.026954174
	Sumatoria	$f'(\varphi)$	total	1.024565212
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi - rac{f(\varphi)}{f'(\varphi)}$	0.39154364
6	$f(\varphi)$	0.213	577135	
	$f'(\varphi)$	1.024	565212	
	φ	(0.6	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.532396237

Tabla 20: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 2.5 bar

Descripción: Del cuadro se observa que para una presión de 2.5 bar de expansión en el tanque flash, sería insuficiente para conseguir un revaporizado eficiente, debido a la presión baja, esto se evidencia cuando se ingresa un factor de evaporación de $\varphi = 0.60$, obteniendo cifras de 53.23% de error sobre la base del cálculo en el modelo propuesto.

4.5.2 Iteraciones para $\varphi = 0.70$ a Presión de 2.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 70% de revaporización del condensado en el tanque flash.

	φ		0.7			
Procedimientos	Fluio masico(kmo	ol/h	Fracciones	comonentes		
			Z1 (cond.)	16%		
1	F	3306.74	72 (02)	17.64%		
			Z3 (N2)	66.36%		
		P(H2O,cond	ensado)mmH	2.4900		
2	Ecuacion de Antoine	P(02	,, 2mmH)	1015.9394		
		P(N2	mmH)	934.2296		
		۰ ۰	,			
		Ki	,H20	0.003276		
3	Constantes de equilibrio	Ki	,02	1.3368		
		Ki	, N2	1.2293		
4	Fraccion vaporizada	φ		0.7		
	Ecuacion de Richford-Rise	Comp	oonente	Valor		
5	$\sum Z_i(1-K_i)$	f(φ)), H02	0.52755297		
5	$f(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(q	o),O2	-0.048074202		
		f(q	o),N2	-0.131099338		
	Sumatoria global	f	<u>(</u> φ)	0.34837943		
ANALISIS	Ecuacion derivada	Elemento				
naso 5 1	$z_i(1-K_i)^2$	f'(φ), H02	1.739450850		
p030 3.1	$f'(\varphi) = \sum \overline{[1 + \varphi(K_i - 1)]^2}$	f'(գ	p),O2	0.013101638		
		f'(q	p),N2	0.025899693		
	Sumatoria	f'(φ)	total	1.778452181		
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{f'(\varphi)}$	0.504110881		
6	$f(\overline{\varphi})$	0.34	837943			
	$f'(\varphi)$	1.778	452181			
	φ	(0.7			
Calculo del error	$e = \left \frac{(\varphi)_N - \varphi}{(\varphi)_N} \right $			0.388583397		

Tabla 21: Cálculos	para fracción	vaporizada a φ	= 0.7	a Presión de 2.5 bar
--------------------	---------------	------------------------	-------	----------------------

Descripción: Del cuadro se observa que para una presión de 2.5 bar de expansión en el tanque flash, sería insuficiente para conseguir un revaporizado eficiente, debido a la presión baja, esto se evidencia cuando se ingresa un factor de evaporación de $\varphi = 0.70$, obteniendo cifras de 38.85% de error sobre la base del cálculo en el modelo propuesto.

4.5.3 Iteraciones para $\varphi = 0.80$ a Presión de 2.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 80% de revaporización del condensado en el tanque flash.

	φ		0.8	
Procedimientos	Eluio masico(kmo	al∕h	Fracciones	comonentes
Troccumientos			71(cond)	16%
1	F	3306 74	72 (02)	17 6/%
-		0000171	73 (N2)	66 36%
			23 (112)	00.3070
		P(H2O.cond	ensado)mmH	2.4900
2	Ecuacion de Antoine	P(O2	2mmH)	1015.9394
		P(N2	mmH)	934.2296
		Ki,	H20	0.003276
3	Constantes de equilibrio	Ki	,02	1.3368
		Ki	, N2	1.2293
4	Fraccion vaporizada		φ	0.8
	Ecuacion de Richford-Rise	Comp	oonente	Valor
5	$C(x) = \sum_{i=1}^{n} Z_i (1-K_i)$	f(φ)	, H02	0.787064282
	$f(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(ự),02	-0.046798797
		f(ự),N2	-0.128559544
	Sumatoria global	f	(φ)	0.611705942
ANALISIS	Ecuacion derivada	Elemento		
paso 5.1	$f'(x) = \sum_{i=1}^{n} \frac{z_i(1-K_i)^2}{(1-K_i)^2}$	f'(φ), H02	3.871688650
	$\int (\varphi)^{-} \sum [1 + \varphi(K_i - 1)]^2$	f'(q	o),O2	0.012415688
		f'(q	p),N2	0.024905902
	Sumatoria	f'(φ)	total	3.909010239
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi - \frac{f(\varphi)}{f'(\varphi)}$	0.643513855
6	$f(\varphi)$	0.611	705942	
	$f'(\varphi)$	3.909	010239	
	φ	().8	
Calculo del error	$e = \left \frac{(\varphi)_N - \varphi}{(\varphi)_N} \right $			0.243174476

Tabla 22: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 2.5 bar

Descripción: Del cuadro se observa que para una presión de 2.5 bar de expansión en el tanque flash, sería insuficiente para conseguir un revaporizado eficiente, debido a la presión baja, esto se evidencia cuando se ingresa un factor de evaporación de $\varphi = 0.80$, obteniendo cifras de 24.31% de error sobre la base del cálculo en el modelo propuesto.

4.5.4 Iteraciones para φ =0.90 a Presión de 2.5 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 90% de revaporización del condensado en el tanque flash.

	φ		0.9	
-				
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
		P(H2O,cond	ensado)mmH	2.4900
2	Ecuacion de Antoine	P(O2	2mmH)	1015.9394
		P(N2	mmH)	934.2296
			-	
		Ki,	,H20	0.003276
3	Constantes de equilibrio	Ki	,02	1.3368
		Ki	, N2	1.2293
4	Fraccion vaporizada		φ	0.9
	·		•	
	Ecuacion de Richford-Rise	Comp	oonente	Valor
_	$\sum Z_{i}(1-K_{i})$	f(φ)), H02	1.549080479
5	$f(\varphi) = \sum \frac{B_{i}(1 - K_{i})}{1 + \varphi(K_{i} - 1)}$	f(u	o),O2	-0.045589315
		f(u),N2	-0.126116287
	Sumatoria global	f	(φ)	1.377374876
ANALISIS	Ecuacion derivada	Elemento		
	$\sum z_i(1-K_i)^2$	f'(φ), H02	14.997814557
paso 5.1	$f'(\varphi) = \sum \frac{1}{[1 + \varphi(K_t - 1)]^2}$	f'(q	o),O2	0.011782232
		f'(q	b),N2	0.023968231
	Sumatoria	f'(q)	total	15.033565020
	Calculo nueva fraccion vaporizada		$f(\varphi)$	0.000000000
		$(\varphi)_N =$	$\varphi = \frac{\varphi}{f'(\varphi)}$	0.808380023
6	$f(\varphi)$	1.377	374876	
	$f'(\varphi)$	15.03	356502	
	φ	().9	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.113337755

Tabla 23: Cálculos para fracción vaporizada a $\varphi = 0.9$ a Presión de 2.5 bar

Descripción: Del cuadro se observa que para una presión de 2.5 bar de expansión en el tanque flash, sería insuficiente para conseguir un revaporizado eficiente, debido a la presión baja, esto se evidencia cuando se ingresa un factor de evaporación de $\varphi = 0.90$, obteniendo cifras de 11.33% de error sobre la base del cálculo en el modelo propuesto.

4.6 Calculo para la presión a 3.0 bar en el tanque revaporizador

En general las fracciones de cada componente presente en el tanque revaporizador es la siguiente

 $F = 3306.74 \, kmol/h$ (Flujo total de mezcla que ingresa)

 $(z_1 = 16\%)$: Condensado que ingresa al tanque para la expansión.

 $(z_2 = 84\%(21\% O_2) = 17.64\%$: Es la cantidad de oxígeno presente en el tanque flash,

$$z_2 = 17.64\%$$

 $(z_3 = 84\%(79\% N_2) = 66.36\%$: Es la cantidad de Nitrógeno presente en el tanque flash

 $z_3 = 66.36\%$,

Ecuación de Antoine

Datos:

P=3.0 bar, por tablas de presión de Moran y Shapiro, termodinámica técnica para ingeniería Tsat= 133.6 °C

$$Ln(P) = A - \frac{B}{T+C}$$

Para el agua en forma de condensado se tiene

$$P = 10^{A - \frac{B}{T+C}}$$

De tablas de obtiene

Tabla 24: Correlaciones y constantes de la ecuación de Antoine, para el agua

Coeficientes	А	В	С
Agua	5.11564	1687.537	230.171

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

Reemplazando se tiene

$$P_{condensado} = 10^{A - \frac{B}{T+C}}$$
$$P = 10^{5.11564 - \frac{1687.537}{133.6 + 230.170}}$$
$$P = 2.9966 \text{ mmHg}$$

Para el Nitrógeno se tiene

Tabla 25: Correlaciones y constantes de la ecuación de Antoine, para el nitrógeno

Coeficientes	А	В	С
Nitrógeno	3.61947	255.680	266.550

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{\mathrm{A} - \frac{\mathrm{B}}{\mathrm{T} + \mathrm{C}}}$$

$$P = 10^{3.61947 - \frac{255.680}{133.6 + 266.550}}$$

$$P = 956.1139 \text{ mmHg}$$

Para el oxígeno se tiene

Tabla 26: Correlaciones y constantes de la ecuación de Antoine, para el oxigeno

Coeficientes	А	В	С
Oxigeno	3.81634	319.013	266.700

The properties of gases Liquids, 5th edition. McGraw Hill. New York.2001

$$P = 10^{A - \frac{B}{T + C}}$$

$$P = 10^{3.81634 - \frac{319.013}{133.6 + 266.700}}$$

 $P = 1045.6954 \, mmHg$

Cálculo de las constantes Ki, para cada componente de los gases

Para agua-estado de condensado

$$K_{i,H_2O(condensado)} = \frac{P_{,cond,i}^{s}}{P}$$

El tanque flash contiene una presión de P=3.0 bar que equivale a 2.961 atm y a su vez equivale a 2250.4 mmHg . (a la presión interna del tanque revaporizador flash).

 $K_{i,H_2O(condensado)} = \frac{\frac{2.9966 \text{ mmHg}}{2250.4 \text{ mmHg}}}{\frac{2250.4 \text{ mmHg}}{2.961 \text{ atm}}}$

 $K_{i,H_2O(condensado)} = 0.003943 atm$

Para el Nitrógeno

$$K_{i,N_2} = \frac{P_{,cond,i}{}^{s}}{P}$$

 $K_{i,N_2} = \frac{956.1139 \text{ mmHg}}{\frac{2250.4 \text{ mmHg}}{2.961 \text{ atm}}}$

 $K_{i,N_2} = 1.2580 \ atm$

Para el Oxigeno

$$K_{i,O_2} = \frac{P_{,cond,i}{}^{s}}{P}$$

$$K_{i,O_2} = \frac{1045.6954 \text{ mmHg}}{\frac{2250.4 \text{ mmHg}}{2.961 \text{ atm}}}$$

$$K_{i,0_2} = 1.3759 atm$$

Las constantes determinadas para cada componente son

Tabla 27: Valores de constantes calculados para cada componente

Componente	K _{i,H2} O(condensado)	K_{i,N_2}	<i>K</i> _{<i>i</i>,<i>0</i>₂}
Valor	0.003943	1.2580	1.3759

Suponer el valor de la fracción vaporizada

Asumiendo un valor para la fracción vaporizada $0 < \varphi < 1$, con la cual iniciaremos la iteración

$$\varphi = 0.5$$

Estimación del valor de la ecuación de Richford -Rise $f(\varphi)$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

Para el condensado

$$f(\varphi)_{H_2O,conden.} = \sum \frac{16\%(1-0.003943)}{1+0.5(0.003943-1)}$$

$$f(\varphi)_{H_20,conden.} = 0.3174$$

Para el Nitrógeno

$$f(\varphi)_{N2_{2}} = \sum \frac{66.36\%(1 - 1.2580)}{1 + 0.5(1.2580 - 1)}$$
$$f(\varphi)_{N_{2}} = -0.1516$$

Para el oxígeno

$$f(\varphi)_{O_2} = \sum \frac{17.64\%(1 - \mathbf{1.3759})}{1 + 0.5(\mathbf{1.3759} - 1)}$$
$$f(\varphi)_{O_2} = -0.0588$$

Sumando los valores obtenidos de forma independiente, se tendrá.

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)}$$

$$f(\varphi) = \sum \frac{z_i(1-K_i)}{1+\varphi(K_i-1)} = f(\varphi)_{H_2O,conden.} + f(\varphi)_{N_{2r}} + f(\varphi)_{O_2}$$

$$f(\varphi) = \sum \frac{z_i(1 - K_i)}{1 + \varphi(K_i - 1)} = 0.3174 + (-0.1516) + (-0.0588) = 0.11$$

El método señala que si el valor de $f(\varphi)$, es igual a cero, entonces ya se hubiera encontrado la solución, sin embargo, se debe continuar con la iteración utilizando métodos numéricos.

Del paso anterior, asumiremos que $\varphi = 0.5$, entonces ejecutando la formula de

Estimación del valor de la derivada de la ecuación de Richford-Rise $f(\varphi)'$ y se evalúa esta ecuación ya derivada.

$$f'(\varphi) = \sum \frac{z_i (1 - K_i)^2}{[1 + \varphi(K_i - 1)]^2}$$

Reemplazando para hallar los nuevos valores en la ecuación derivada para los componentes

Para el condensado

$$f'(\varphi) = \sum \frac{16\%(1 - 0.003943)^2}{[1 + 0.5(0.003943 - 1)]^2} = 0.6299$$

Para el Nitrógeno

$$f'(\varphi) = \sum \frac{66.36\%(1 - 1.2580)^2}{[1 + 0.5(1.2580 - 1)]^2} = 0.0346$$

Para oxigeno

$$f'(\varphi) = \sum \frac{17.64\%(1 - 1.3759)^2}{[1 + 0.5(1.379 - 1)]^2} = 0.0176$$

$$f'(\varphi)_{total} = 0.6299 + 0.0176 + 0.0176 = 0.6743$$

Calculando el nuevo valor de la fracción vaporizada

$$(\varphi)_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$$

Reemplazando los datos

$$(\varphi)_N = 0.5 - \frac{(0.11)}{0.6743}$$

 $(\varphi)_N = 0.3387$

Cálculo del error entre el valor propuesto y el valor calculado de la fracción vaporizada

$$e = \left| \frac{(\varphi)_N - \varphi}{(\varphi)_N} \right|$$

$$e = 0.4759$$

Observamos que el error aún no es menor a 0.001, por lo cual se continúa iterando para un nuevo valor de φ (fracción vaporizada).

4.6.1 Iteraciones para $\varphi = 0.60$ a Presión de 3 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 60% de revaporización del condensado en el tanque flash.

	φ		0.6	
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
		P(H2O, condensado) mmH		2.9966
2	Ecuacion de Antoine	P(O2	2mmH)	1045.6954
		P(N2	mmH)	956.1139
2		Ki,	Ki,H20 0.0	
3	Constantes de equilibrio	Ki	,02	1.3759
		Ki	, N2	1.2580
4	Fraccion vanorizada		(0	0.6
Т			Ψ	0.0
	Ecuacion de Richford-Rise	Comp	oonente	Valor
-	$f(\varphi) = \sum \frac{Z_i(1-K_i)}{1+\varphi(K_i-1)}$	f(φ), H02		0.396080338
5		f(φ),O2		-0.05410464
		f(φ),N2	-0.148269437
	Sumatoria global	f	(φ)	0.193706262
ANALISIS	Ecuacion derivada	Elemento		
naso 5 1	$z_i(z) = \sum_{i=1}^{n} z_i(1-K_i)^2$	f'(φ), H02	0.980497716	
paso 5.1	$f'(\varphi) = \sum \frac{1}{[1 + \varphi(K_i - 1)]^2}$	f'(φ),O2		0.016594740
		f'(φ),N2		0.033128128
	Sumatoria	$f'(\varphi)$	total	1.030220584
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi - rac{f(\varphi)}{f'(\varphi)}$	0.411975935
6	$f(\varphi)$	0.193	706262	
	$f'(\varphi)$	1.030	220584	
	φ	(0.6	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.456395746

Tabla 28: Cálculos para fracción vaporizada a $\varphi = 0.6$ a Presión de 3 bar

Descripción: Se observa que si se introduce el valor de $\varphi = 0.60$, que equivale al 60% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 45.63%, significa que, al elevar el factor de evaporación el error disminuye.

4.6.2 Iteraciones para φ =0.70 a Presión de 3 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 70% de revaporización del condensado en el tanque flash.

	φ		0.7	
Procedimientos	Flujo masico(kmol/h		Fracciones comonentes	
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
	Ecuacion de Antoine	P(H2O, condensado) mmH		2.9966
2		P(O2	2mmH)	1045.6954
		P(N2	mmH)	956.1139
				r1
		Ki,H20		0.003943
3	Constantes de equilibrio	К	i,02	1.3759
		Ki	, N2	1.2580
4	Fraccion vaporizada		φ	0.7
	Faussian de Diskfand Dise			
	Ecuación de Richford-Rise	f(ra) 1102		Valor
5	$f(\varphi) = \sum \frac{Z_i(1 - K_i)}{1 + \varphi(K_i - 1)}$	f(φ), H02		0.526387733
		f(q	0),UZ	-0.05249455
	Sumatoria global	$f(\phi), NZ$		-0.145029025
ΔΝΔΗΣΙΣ	Ecuacion derivada	Flomento	(φ)	0.320004130
ANALISIS	$\sum_{k=1}^{\infty} (1 - k^{2})^{2}$	f'(m	L) H02	1 731775285
paso 5.1	$f'(\varphi) = \sum_{i} \frac{z_i (1 - \kappa_i)^2}{[1 + \varphi(\kappa_i - 1)]^2}$	$f'(\omega) \Omega^2$		0.015621756
	$\sum [1 + \psi(n_i - 1)]$	f	p).N2	0.031695929
	Sumatoria	$f'(\varphi)$	total	1.779092970
	Calculo nueva fraccion vaporizada	()	$f(\varphi)$	0.545450660
		$(\varphi)_N =$	$\varphi = \frac{1}{f'(\varphi)}$	0.515150662
6	$f(\varphi)$	0.328	864158	
	$f'(\varphi)$	1.77	909297	
	φ		0.7	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.35882578

Tabla 29: Cálculos para fracción vaporizada a $\varphi = 0.7$ a Presión de 3 bar

Descripción: Se observa que si se introduce el valor de $\varphi = 0.70$, que equivale al 70% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 35.88%..

4.6.3 Iteraciones para φ =0.80 a Presión de 3 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 80% de revaporización del condensado en el tanque flash.

	φ		0.8	
Procedimientos	Flujo masico(kmol/h		Fracciones comonentes	
	F	3306.74	Z1 (cond.)	16%
1			Z2 (O2)	17.64%
			Z3 (N2)	66.36%
		P(H2O, condensado) mmH		2.9966
2	Ecuacion de Antoine	P(O2	2mmH)	1045.6954
		P(N2	mmH)	956.1139
		-		
		Ki,	H20	0.003943
3	Constantes de equilibrio	Ki	,02	1.3759
		Ki	, N2	1.2580
4	Fraccion vaporizada		φ	0.8
	Ecuacion de Richford-Rise	Componente		Valor
Ę	$f(\varphi) = \sum \frac{Z_i(1-K_i)}{1+\varphi(K_i-1)}$	f(φ), H02		0.784473501
		f(φ),O2		-0.050977519
		f(φ),N2		-0.141927222
	Sumatoria global	f	<u>(</u> φ)	0.591568759
ANALISIS	Ecuacion derivada	Elemento		
naso 5 1	$z_i(1-K_i)^2$	f'(φ), H02	3.846241706
paso 5.1	$f'(\varphi) = \sum \frac{1}{[1+\varphi(K_i-1)]^2}$	<u>)]</u> ² f'(φ),O2	o),O2	0.014731902
		f'(φ),N2		0.030354636
	Sumatoria	$f'(\varphi)$	total	3.891328244
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi - \frac{f(\varphi)}{f'(\varphi)}$	0.647977677
6	$f(\varphi)$	0.591	.568759	
	$f'(\varphi)$	3.891	.328244	
	φ	().8	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.234610432

Tabla 30: Cálculos para fracción vaporizada a $\varphi = 0.8$ a Presión de 3 bar

Descripción: Se observa que si se introduce el valor de $\varphi = 0.80$, que equivale al 80% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 18.02%.

4.6.4 Iteraciones para φ =0.90 a Presión de 3 Bar

Análisis de parámetros del sistema termodinámico flash bifásico con 90% de revaporización del condensado en el tanque flash.

	φ		0.9	
Procedimientos	Flujo masico(kmol/h		Fracciones comonentes	
			Z1 (cond.)	16%
1	F	3306.74	Z2 (O2)	17.64%
			Z3 (N2)	66.36%
	Ecuacion de Antoine	P(H2O, condensado) mmH		2.9966
2		P(02	2mmH)	1045.6954
		P(N2	mmH)	956.1139
				[]
		Ki	,H20	0.003943
3	Constantes de equilibrio	K	i,02	1.3759
		Ki	, N2	1.2580
4	Fraccion vaporizada		φ	0.9
	Founda Diebford Dies			
		$f(u_0) = HO2$		Valor
5	$f(\varphi) = \sum \frac{Z_i(1 - K_i)}{1 + \varphi(K_i - 1)}$	$f(\phi) \cap 2$		1.539070415
		f(q	N2	-0.049343707
	Sumatoria global	$f(\phi), NZ$		1 350575388
ANALISIS	Ecuacion derivada	Flemento		1.330373300
	$\sum z (1 - K)^2$	f'(۵). H02	14.804726312
paso 5.1	$f'(\varphi) = \sum \frac{2i(1-K_i)}{[1+\varphi(K_i-1)]^2}$	f'(φ).O2		0.013915970
		f'(φ),N2		0.029096716
	Sumatoria	$f'(\varphi)$	total	14.847738998
	Calculo nueva fraccion vaporizada	$(\varphi)_N =$	$\varphi = \frac{f(\varphi)}{g(\varphi)}$	0.809038313
	f(10)		$f'(\varphi)$	
6	$f(\varphi)$	1.350	0575388	
	$f'(\varphi)$	14.8	347739	
	φ		0.9	
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.112431866

Tabla 31: Cálculos para fracción vaporizada a $\varphi = 0.9$ a Presión de 3 bar

Descripción: Se observa que si se introduce el valor de $\varphi = 0.90$, que equivale al 90% de la masa del condensado que ingresa al tanque flash, que se va a convertir en vapor flash, este valor converge hasta 11.24%.

4.7 Análisis de los escenarios a presión variable

Tabla 32. Resumen de coeficientes φ y % de errores (e %)

Presión	φ	e (%)
1.5 Bar	0.5	133.08
	0.6	79.56
	0.7	47.94
	0.8	26.81
	0.9	11.63

Presión	φ	e (%)
2.5 Bar	0.5	63.19
	0.6	53.23
	0.7	38.85
	0.8	24.31
	0.9	11.33

Presión	φ	e (%)
3 Bar	0.5	47.59
	0.6	45.69
	0.7	35.88
	0.8	23.46
	0.9	11.24

Se presenta las tablas de resumen de los cálculos realizados a diferentes presiones y con la fracción revaporización de 0.5 a 0.9 con el fin de ver la proyección del modelo bifasico, así mismo ver que variación tiene el % error al aumentar la fracción de revaporización.

Se puede apreciar que a medida que crece el factor de revaporización el % de error disminuye hasta llegar el valor más pequeño que será 11.24% a una Presión de 3 Bar y una fracción de evaporización de 0.9. Cabe recalcar que esto es una situación teórica.

4.8 Indicadores energeticos

4.8.1 Flujo de caja del proyecto

Tabla 33. Cálculo del flujo de caja del proyecto con duración de 10 años

Años	Egreso inicial 1 Inversión USD/Año	Ingresos USD/Año	Egresos 2 Cost -Oper y Mttto. USD/Año	Flujo de caja neto (USD/año)
0	70,900.00			-70,900.00
1		93,473.13	3,080.00	90,393.00
2		93,473.13	3,080.00	90,393.00
3		93,473.13	3,080.00	90,393.00
4		93,473.13	3,080.00	90,393.00
5		93,473.13	3,080.00	90,393.00
6		93,473.13	3,080.00	90,393.00
7		93,473.13	3,080.00	90,393.00
8		93,473.13	3,080.00	90,393.00
9		93,473.13	3,080.00	90,393.00
10		93,473.13	3,080.00	90,393.00

Tabla 34. Resumen de indicadores económicos

Indicadores	Valor	Unidades		
Tasa de rendimiento	12	%		
Tiempo de análisis	10	años		
VAN	439,840.34	USD		
TIR	127.49	%		
PAYBACK	0.75	años		

Aquí con el apoyo del área de operaciones y mantenimiento se puede apreciar la inversión que costaría poder generar un nuevo tanque flash que seria 70 900 USD y el ahorro al año que se obtendría por vapor ahorrado sería un valor de 93 473.13 USD. Así mismo, el costo de mantenimiento anual al tanque de vapor flash seria 3 080 USD anual, obteniendo un payback de 0.75 años.

4.9. Discusiones

Quirola, D. (2017) en su tesis. *Diseño e implementación de un sistema de recuperación de energía a partir de purgas laterales, condensados y vapor flash para el calentamiento de agua en procesos industriales*, tuvo como objetivo diseñar un sistema de recuperación de energía usando fluidos térmicos residuales en un sistema de expansión flash, Quiroga concluye que las relaciones de consumo de combustible y consumo de agua para la generación de vapor disminuyeron en un 34 y 40 % respectivamente para la semana 50 (15ta semana de implementación del sistema). Aumentando la generación de vapor por m3 de agua en un 130 %, sin embargo, en el presente informe se constata que el ahorro de vapor vivo con la operación del tanque flash en el área de secadores rotatubos es de 3364,025 kg/h y en el área de secadores rotadisco es de 592,80 kg/h, obteniéndose que los indicadores económicos del proyecto determinan un VAN de 439,840.34 USD una TIR de 127,42 % y un Payback de 10 años aproximadamente.

Urcia, G. y Zavaleta, J. (2016), *Implementación de un Sistema Vapor Flash para reducción del consumo de vapor en el Área de Cocción – Empresa Pesquera Centinela S.A.C.* Tuvo como objetivo evaluar la implementación de un sistema de vapor flash para reducir el consumo de vapor en el área de cocción, asimismo evaluar la situación actual de consumo vapor, además de estimar las dimensiones del tanque flash y evaluar su implementación en base a la rentabilidad económica, determinaron las dimensiones principales de los tanques flash. Obtuvieron valores obtenidos del VAN, TIR,NPER, el VAN reporta un valor de \$514561.89, TIR es de 323.0%, el númerode periodo de repago (NPER) de 0.31 años, por lo cual al comparar sus resultados frente a los que se obtuvo en el presente informe el ahorro de vapor vivo con la operación del tanque flash en el área de secadores rotatubos es de 3364,025 kg/h y en el área de secadores rotadisco es de 592,80 kg/h, obteniéndose que los indicadores económicos del proyecto determinan un VAN de 439,840.34 USD una TIR de 127,42 % y un Payback de 10 años aproximadamente.

Custodio, J. y Solís, E. (2017), Evaluación del sistema de recuperación de purgas de fondo y de nivel de las calderas pirotubulares en la empresa pesquera Austral Group S.A.A.-*Coishco*. Tuvo como objetivo evaluar el sistema de recuperación de purgas de fondo y de nivel de las calderas, además de diseñar y seleccionar el sistema de recuperación de calor mixto de purgas, determinar la cantidad de calor recuperado y combustible ahorrado, y evaluar la factibilidad del sistema. En esta presente tesis el método de investigación es descriptiva y aplicativa, basado en el uso de balance de energía de la primera ley de la termodinámica y el uso de manuales técnicos de diseño de sistemas de purgas proveída de Spirax Sarco y Angstroms. Obteniendo resultados en el análisis económico del sistema de recuperación de purgas de fondo y de nivel de las calderas pirotubulares, se observa que los ingresos anuales por la generación de vapor flash a 7.5 PSI es \$ 12568.51, los ingresos por la recuperación de calor que sede el condensado de purgas de tanque flash al flujo de agua de alimentación de las 07 calderas mediante el intercambiador de placas es \$ 10706.26 y los ingresos por la disminución del porcentaje de CO2 emitido al medio ambiente es \$ 3885.75. Siendo estos ingresos adecuados para que el proyecto a implementar sea económicamente rentable. Los tesistas concluyeron que en un Sistema de recuperación de purgas obtenían una eficiencia de las siete calderas del 85 %, generando un flujo de condensado de purgas de 9 617.33 Kg/h a una presiónde 120 psia, que genera un flujo de vapor flash de 1 206.01 Kg/h a una presiónde 7.5 psia. Determinaron la tasa interna de retorno (TIR) de 52.5%, un periodo de repago de inversión de 23 meses y la relación Beneficio- Costo(B/C) del proyecto de 2.68, sobre los resultados que se obtuvo en este informe se tiene que el VAN es de 439,840.34 USD y una TIR de 127,42%.

León D. (2009), Ahorro Energético con la producción de vapor flash a través de los condensados recuperados de proceso en laempresa Copeinca - *Huarmey*. Tuvo como objetivo evalúa el ahorro energético con la producción de vapor flash a través de condensados recuperados, asimismo cuantificar el flujo de condensados y la generación de vapor flash a 4 niveles de presión y mejorar los indicadores energéticos y económicos. Metodológicamente los tesistas emplean el tipo descriptiva y aplicada y los cálculos térmicos y mecánicos se balaron en aplicación de balance de energía y materia y diseño de recipientes a presión ASME, y catálogos de fabricantes comerciales de tanques flash. Los resultados adquiridos indica una mejora los Indicadores Energéticos y Económicos en el orden del 4,12 % en toda la Planta, estableciendo de que la Instalación de un Sistema de Generación de Vapor Flash es rentable energética y técnicamente. La línea de secado a vaporSD tiene una mejora de

5,08 % y la línea de secado a fuego Directo FD una mejora de 3,43%. Teniendo una conclusión que a través de producción de vapor flash secuantifica la generación de vapor flash a 4 niveles de presión: 3,0; 2,5; 2,0 y 1,5kgf/cm2, obteniéndose que es mucho más rentable técnico y económicamente la generación de vapor flash a 1,5 kgf/cm².

Carrizales, O. (2022). Efecto del dimensionamiento de tanque flash para el ahorro de consumo en la empresa pesquera Cantabria, Coishco, Ancash, tuvo como objetivo dimensionar el tanque flash para el ahorro de consumo de vapor para la empresa pesquera Cantabria. Metodológicamente los tesistas aplicaron balance de materia y energía, así como de cálculos dimensionales usando la Norma ASME. Obteniendo unos resultados que indican que se tiene un D=6 pulg para tubería de ingreso de cocinas, en secadores rotadisco de 4 pulgadas, para condensados de secador rotatubo 4 pulgadas y diámetro de salida de vapor flash de 18 pulgadas, diámetro de salida de condensados de 8 pulgadas, diámetro de tanque flash de 800 mm y la altura de tanque flash de 3200 mm, un área de tanque flash de 9,048 m^2 y un volumen de tanque flash de 1,61 m³. Concluyendo que se ahorró 1595,362 kg/h de vapor, lo que equivale a 6,6% de ahorro porcentual con respecto al consumo de 24 162,24 kg vapor/h para el cocinado de 15,111 ton/h de materia prima, el calor ganado con el tanque flash es de 117,086 BHP y un ahorro de combustible de 40,736 gal/h en el área de cocinado y 558 896,243 gal/año de combustible R500 ahorrados en la planta, lo cual significa 4,376% de ahorro, el análisis económico determina un VAN=540 713,157 USD y una TIR =139%, además la rentabilidad de 275% y un PAYBACK de 0,36 años(4 meses), mientras que el resultado obtenido es de VAN de 439,840.34 USD una TIR de 127,42 % con una extensión de duración del proyecto de 10 años.

- 5. Conclusiones
 - Los parámetros termodinámicos de balance de materia y energía se establecieron basado en las cantidades de condensados del área de secadores conformados por los secadores rotadiscos y rotatubos que concentran un flujo másico total de condensados de 13,82 kg/s y 05 cocinas que concentran el flujo másico de 2,55 kg/s obteniendo un flujo másico total disponible aproximado de 16 kg/s, estos condensados se liberan de cada equipo entre 4 a 3.8 bar de presión, por lo que al concentrarlo llega al sistema revaporizado a 3,5 bar para su expansión.
 - El modelo detalla que para un valor de $\varphi = 0.90$ (tasa formación de vapor) el error estimado es 0.1163, es decir que considera que el 11.63% del 70% del flujo total que se expande.
 - El modelo termodinámico flash isotérmico bifásico vario hasta el 11.63%, considerando un escenario de valor de $\varphi = 0.90$ de evaporación, pero para escenarios reales para un valor de $\varphi = 0.70$ el error indicado es de 47.94%, que señala que en este caso el modelo se aproxima a un valor real a medida que disminuye el error.
 - De la investigación, se ha encontrado que un indicador energético es el flujo másico cuyo valor optimo es 16.37 kg/s a una presión de 3.5 Bar.
 - La inversión del proyecto alcanzó un valor de 70,900.00 USD con un VAN de 439,840.34 y una TIR de 127,47 a una tasa de 12%. Así como un tiempo de retorno de la inversión de 0.75 años.

6. Recomendaciones

- Realizar un estudio de balance de energía térmica centrado en la nueva demanda de calor asociado al incremento de cargas térmicas que se implementaran a posterior, para dimensionar un sistema de revalorización flash.
- En el uso del método de modelo termodinámico bifásico de vapor flash, se debe considerar el factor $\varphi = 50\%$, como primer efecto de expansión de vapor flash, luego analizar los factores por encima de este valor hasta el 90%.
- En el sistema actual de distribución de vapor flash se recomiendas aislar las tuberías que abastecen de vapor flash al área de PAMA, específicamente la que conduce el vapor flash hacia la separadora ambiental.
- Los cocinadores y secadores deben de tener un plan de mantenimiento centrado en la recuperación del condensado a fin de optimizar la disponibilidad en planta para su uso en la revalorización del sistema
- Establecer un programa de capacitación en uso eficiente de la energía al personal a cargo de la operación de los equipos térmicos en planta.

7. Referencias bibliográficas

- Freedman, B., Pryde, E. H. and Mounts., Variables affecting the yields of fatty esters from transterifield vegetables oils., Journal of American Oil Chemist Society, Vol. 61, No 10, 1984, pp. 1638-1643.
- Incropera Frank P., Fundamentos de transferencia de Calor, Cuarta Edición, Editorial Prentice – Hall, México 1999.
- Keenan Y Keyes, Tablas de Propiedades Termodinámicas del vapor, Primera dición, New-York. John Wiley & Sons Inc., Noviembre 2007.
- White, F. "Mecánica de fluidos" Ed. McGraw Hill (2008)
- Holman, J. P.: Transferencia de Calor, 8a edición, Mc Graw-Hill, Madrid, 1998

Cengel, Y. A., & Boles, M. A. (2015). *Termodinámica (8a.* McGraw Hill Mexico.Moran, M. J., & Shapiro, H. N. (2018). *Fundamentos de termodinámica técnica*. Reverté.

Levenspiel, O. (1997). *Fundamentos de termodinámica* (No. TJ265. L48 1997.). México: Prentice Hall.

Murillo, W. (2008). La investigación científica. Consultado el 18 de abril de 2008 de http://www.monografias.com/ trabajos15/investcientífica/investcientífica.shtm

Van Wylen, G., Sonntag, R. E., & Borgnakke, C. (1994). Fundamentos da termodinâmica clássica. Editora Blucher.

Tesis

- Custodio, Juan y Solís, Enzo (2017). Evaluación del Sistema de Recuperación de Purgas de Fondo y de Nivel de las Calderas Pirotubulares en la Empresa Pesquera Austral Group S.A.A. - Coishco. Universidad Nacional del Santa. Nuevo Chimbote, Perú. 76 pp.
- Carrizales Briceño, O. A. Efecto del dimensionamiento de tanque flash para el ahorro de consumo de vapor en la Empresa Pesquera Cantabria, Coishco, Ancash.
- Quirola Guevara, D. A. (2017). Diseño e implementación de un sistema de recuperación de energía a partir de purgas laterales, condensados y vapor flash para el calentamiento de agua en procesos industriales (Bachelor's thesis).

León Tello, D.H. (2019) Ahorro energético con la producción de vapor flash a través de los condensados recuperados de proceso en la empresa Pesquera Copeinca Huarmey, Universidad Nacional del Santa. Nuevo Chimbote, Perú.136 pp.

Ramos, Jhon & Valle, Kevin (2019). Influencia de un Sistema de Vapor Flash en el Área de Secado para la Reducción del Consumo de Combustible en la Planta de Harina Copeinca Chancay, 2019.Universidad Nacional del Santa. Nuevo Chimbote, Perú. pp. 151. Urcia, Gary & Zavaleta, Jean (2016). Implementación de un Sistema Vapor Flash parareducción del consumo de Vapor en Área de Cocción-Empresa PesqueraCentinela S.A.C.

8. Linkografías

https://content.spiraxsarco.com/-/media/spiraxsarco/international/documents/es/ti/tipo_fv-ti-p404-03es.ashx?rev=5e0c786d75bb4f4a86ce25466cf4861b

https://www.comexperu.org.pe/articulo/exportaciones-pesqueras-caenun-47-durante-el-primer-semestre-de-2022

https://sincal.es/conceptos-basicos-del-vapor/

https://www.aspenpluspmartin.com/aspen-plus/modelos-termodinámicos

https://www.tlv.com/global/LA/steam-theory/introduction-to-condensaterecovery.html#:~:text=Condensado% 20es% 20el% 20l% C3% ADquido% 20form ado,equipo% 20que% 20debe% 20ser% 20calenT

ANEXOS

	φ	0.6			
Procedimientos	Flujo masico(kmo	ol/h	Fracciones	comonentes	
			Z1 (cond.)	16%	
1	F	3306.74	Z2 (O2)	17.64%	
			Z3 (N2)	66.36%	
		P(H2O,cond	ensado)mmH	1.4966	
2	Ecuacion de Antoine	P(O2	2mmH)	938.8873	
		P(N2	mmH)	876.9572	
		Ki	,H20	0.0019684	
3	Constantes de equilibrio	Ki	,02	1.235	
		Ki, N2		1.153	
4	Fraccion vaporizada		φ	0.6	
	Ecuacion de Richford-Rise	Comp	oonente	Valor	
5	$\zeta(x) = \sum_{i=1}^{N} Z_i (1 - K_i)$	f(φ)), H02	0.398037395	
5	$f(\varphi) = \sum \frac{1}{1 + \varphi(K_i - 1)}$	f(ự),02	-0.036331288	
		f(φ),N2		-0.092993955	
	Sumatoria global	f	<u>(</u> φ)	0.268712152	
ANALISIS	Ecuacion derivada	Elemento			
paso 5.1	$f'_{i}(x) = \sum \frac{z_{i}(1-K_{i})^{2}}{2}$	f'(φ), H02		0.990211048	
	$\int (\phi)^{2} = \sum [1 + \varphi(K_{t} - 1)]^{2}$	f'(φ),O2		0.007482781	
		f'(φ),N2		0.013031760	
	Sumatoria	$f'(\varphi)_{total}$		1.010725588	
	Calculo nueva fraccion vaporizada	$(\varphi)_N = \varphi - \frac{f(\varphi)}{f'(\varphi)}$		0.33413936	
6	$f(\varphi)$	0.268	712152		
	$f'(\varphi)$	1.010	725588		
	φ	(0.6		
Calculo del error	$e = \frac{(\varphi)_N - \varphi}{(\varphi)_N}$			0.795657954	

Anexos 01. Plantilla de cálculo y dimensionado de sistema de revaporizado

No.	SUSTANCIA	FORMULA	Α	В	С
1	Metano	CH ₄	3.7687	395.744	266.681
2	Etano	C ₂ H ₆	3.95405	663.72	256.681
3	Propano	C ₃ H ₈	3.92828	803.997	247.04
4	n-Butano	C4H10	3.93266	935.773	238.789
5	n-Pentano	C5H12	3.97786	1064.84	232.014
6	n-Hexano	$C_{6}H_{14}$	4.00139	1170.875	224.317
7	n-Heptano	C7H16	4.02023	1263.909	216.432
8	n-Octano	C ₈ H ₁₈	4.05075	1356.36	209.635
9	n-Nonano	C9H20	4.07356	1438.03	202.694
10	Isobutano	C4H10	4.00272	947.54	248.87
11	Isoctano	C ₈ H ₁₈	4.03877	1335.22	213.415
12	Ciclopentano	C5H10	4.06783	1152.574	234.51
13	Ciclohexano	C6H12	3.93002	1182.774	220.618
14	Metilciclopentano	C6H12	4.18199	1295.543	238.39
15	Metilciclohexano	C7H14	3.98232	1290.968	223.701
16	Etileno	C_2H_4	3.91382	596.526	256.37
17	Propileno	C ₃ H ₆	3.95606	789.624	247.58
18	1-Buteno	C4H8	3.9178	908.8	238.54
19	cis-2-Buteno	C_4H_8	4.00958	967.32	237.873
20	trans-2-Buteno	C4H8	4.00827	967.5	240.84
21	1-Hexeno	C ₆ H ₁₂	4.18199	1295.543	238.39
22	Isobutileno	C_4H_8	3.80956	866.25	234.64
23	1,3-Butadieno	C ₄ H ₆	3.9664	927.21	238.63
24	Ciclohexeno	C6H10			
25	Acetileno	C_2H_2	3.67374	528.67	228.79
26	Benceno	C ₆ H ₆	3.98523	1184.24	217.572
27	Tolueno	C7H8	4.05004	1327.62	217.625
28	Etilbenceno	C8H10	4.06861	1415.77	212.3
29	Cumeno	C9H12	4.06112	1460.766	207.83
30	o-Xileno	C8H10	4.09789	1458.706	212.041
31	m-Xileno	C8H10	4.14051	1468.703	216.12
32	p-Xileno	C8H10	4.10494	1446.832	214.627
33	Estireno	C ₈ H ₈			
34	Naftaleno	C10H8	4.13555	1733.71	201.859
35	Bifenilo	C12H10	4.1887	1841.48	185.15
36	Formaldehido	CH ₂ 0			
37	Acetaldehido	C2H40			
38	Acetato de Metilo	C ₃ H ₆ O ₂	4.18621	1156.43	219.69
39	Acetato de Etilo	$C_4H_8O_2$	4.13361	1195.13	212.47
40	Acetona	C ₃ H ₆ O	4.2184	1197.01	228.06
41	Metil Etil Cetona	C4H8O	4.1386	1232.63	218.69

Anexo 02. Tablas de constantes de Antoine

42	Eter dietílico	C4H10O	4.10962	1090.64	231.2
43	Eter metil t-butílico	C5H12O	3.83648	1052.47	210.88
44	Metanol	CH4O	5.20277	1580.08	239.5
45	Etanol	C ₂ H ₆ O	5.33675	1648.22	230.918
46	1-Propanol	C ₃ H ₈ O	4.99991	1512.94	205.807
47	1-Butanol	$C_4H_{10}O$	4.6493	1395.14	182.739
48	1-Hexanol	C ₆ H ₁₄ O	4.18948	1295.59	152.51
49	2-Propanol	C ₃ H ₈ O	5.24268	1580.92	219.61
50	Fenol	C ₆ H ₆ O	4.2696	1523.42	175.4
51	Etilenglicol	C ₂ H ₆ O ₂			
52	Ácido Acético	C ₂ H ₄ O ₂	4.54456	1555.12	224.65
53	Acido n-butírico	C4H8O2	4.8234	1731.708	195.955
54	Acido Benzoico	C7H6O2			
55	Acetonitrilo	C ₂ H ₃ N			
56	Metilamina	CH ₅ N	4.5442	1050.66	237.83
57	Etilamina	C ₂ H ₇ N	4.434	1102.88	232.45
58	Nitrometano	CH ₃ NO ₂			
59	Tetracloruro de carbono	CCl ₄	4.10445	1265.632	232.148
60	Cloroformo	CHCl ₃	3.96288	1106.904	218.552
61	Diclorometano	CH ₂ Cl ₂	4.07622	1070.07	223.24
62	Cloruro de metilo	CH ₃ Cl	4.16533	920.86	245.58
63	Cloruro de etilo	C ₂ H ₅ Cl	4.09088	1020.63	237.57
64	Clorobenceno	C ₆ H ₅ Cl	4.02012	1378.79	211.7
65	Argón	Ar	3.74141	304.227	267.32
66	Kriptón	Kr	3.7556	416.38	264.45
67	Xenón	Xe	3.76779	566.282	258.66
68	Helio 4	He	1.6836	8.155	273.71
69	Hidrógeno	H_2	2.94928	67.508	275.7
70	Oxígeno	O_2	3.81634	319.013	266.7
71	Nitrógeno	N2	3.61947	255.68	266.55
72	Cloro	Cl ₂	4.0628	861.34	246.33
73	Monóxido de carbono	СО	3.81912	291.743	267.996
74	Dióxido de carbono	CO ₂			
75	Disulfuro de carbono	CS_2			
76	Sulfuro de hidrógeno	H_2S	4.22882	806.933	251.39
77	Dióxido de Azufre	SO_2	4.4072	999.9	237.19
78	Trióxido de Azufre	SO_3	6.17575	1735.31	236.5
79	Óxido Nítrico	NO	5.8679	682.939	268.27
80	Óxido Nitroso	N ₂ O	4.12884	654.26	247.16
81	Cloruro de hidrógeno	HCl	4.2949	745.78	258.88
82	Cianuro de hidrógeno	CNH			
83	Agua	H ₂ O	5.11564	1687.537	230.17
84	Amoníaco	NH ₃	4.4854	926.132	240.17

Presión bar	Temp. °C	Volumen m ⁻	específico ³ /kg	Energía kJ/	interna Kg	an saran	Entalpía kJ/kg		Entropía kJ/kg · K		
		Liquido sat. $v_f \times 10^3$	Vapor sat. ^v g	Líquido sat. "f	Vapor sat. u _g	Líquido sat. h _f	Vapori- zación h _{fk}	Vapor sat. hg	Líquido sat. s _f	Vapor sat.	or Presión . bar
0.04	28.96	1.0040	34 800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8 4746	0.04
0.06	36.16	1 0064	23 739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8 3304	0.04
0.08	41.51	1.0084	18 103	173.87	2432.2	173.88	2403 1	2577.0	0.5926	8 2287	0.00
0.10	45.81	1.0102	14 674	191.82	2437.9	191.83	2392.8	2584 7	0.6493	8 1502	0.00
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.10
0.30	69.10	1.0223	5 229	289 20	7468 4	789 23	2336.1	2625.3	0.9439	7 7686	0.30
0.40	75.87	1.0265	3 993	317 53	2477.0	317 58	2310.7	2625.5	1.0250	7.6700	0.30
0.50	81.33	1.0300	3 240	340.44	2483.0	340.40	2305 4	2645.0	1.0239	7.5020	0.40
0.60	85.94	1.0331	2 732	350 70	2400.9	350.86	2303.4	2643.5	1.1452	7.5339	0.50
0.70	89.95	1.0360	2.365	376.63	2489.0	376.70	2283.3	2660.0	1.1433	7.4797	0.00
0.80	02.50	1.0290	2 097	201.59	2400.0	201.66	2274.1	2665.9	1.3230	7 4746	0.00
0.00	95.00	1.0300	1.860	405.06	2470.0	405.15	22/4.1	2003.8	1.2329	7.4340	0.80
1.00	00.63	1.0410	1.609	405.00	2502.0	405.15	2203.7	20/0.9	1.2095	7.3949	0.90
1.50	111 4	1.0452	1.054	417.30	2500.1	417.40	2236.0	20/3.3	1.3020	7.3394	1.00
2.00	120.2	1.0526	0.8857	504.49	2519.7	504 70	2220.3	2095.0	1.4330	7.12233	2.00
2.00	120.2	1.0005	0.0057		2227-2	504.70	2201.9	2700.7	1.5501	1.12/1	2.00
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00
3.50	138.9	1.0786	0.5243	583.95	2546.9	584.33	2148.1	2732.4	1.7275	6.9405	3.50
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2.0462	6.6628	8.00
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6.4448	15.0
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	.1753.7	2803.4	2 7253	6.1253	35.0
40.0	250.4	1.2522	0.04978	1082.3	2602.3	1087.3	1714.1	2801.4	2.7964	6.0701	40.0
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0
80.0	295.1	1.3842	0.02352	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0
90.0	303.4	1.4178	0.02048	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0
100.	311.1	1.4524	0.01803	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100
10.	318.2	1 4886	0.01599	1433 7	2520.8	1450 1	1355 5	2705 6	3 4205	5 5537	110

Anexo 03. Tablas termodinámicas de vapor -Moran y Shapiro.

Anexo 04 Fotografías de equipos de planta

Anexo 04.1 Equipos disponibles en planta de harina

Anexo 04.2 Vista de cocinador disponible en planta de harina

Anexo 04.3 Vista de cocinador disponible en planta de harina

