UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Alternativa óptima de pavimentación para el tramo Panamericana Norte km 443 hasta Puerto Santa"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTORES:

Bach. Barriga Gleni, Diego Rafael

Bach. De La Cruz Sánchez, Jerson Aldair

ASESOR:

Ms. Ing. Alvarez Asto, Luz Esther Código ORCID 0000-0001-9050-7611

NUEVO CHIMBOTE – PERÚ

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

REVISADO Y APROBADA POR:

MS. ING. ALVAREZ ASTO LUZ ESTHER

(ASESOR)

ORCID 0000-0001-9050-7611

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

REVISADO Y APROBADA POR:

Ms. Julio Cesar Rivasplata Díaz

Presidente

ORCID 0000-0002-4180-9362

Ms. María Jesús Estela Díaz Hernández Secretaria ORCID 0000-0001-5316-5720 Ms. Ing. Alvarez Asto Luz Esther Integrante ORCID 0000-0001-9050-7611

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 19 días del mes de enero del año dos mil veintitrés, siendo las 12 horas de la mañana, en el Aula C-1 de la Escuela Profesional de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 554-2022-UNS-CFI,con fecha 25.11.2022, integrado por los siguientes docentes: Ms. Julio César Rivasplata Díaz (Presidente), Ms. María Jesús Estela Díaz Hernández (Secretaria), Ms. Luz Esther Álvarez Asto (Integrante), y Ms. Edgar Gustavo Sparrow Álamo (Accesitario), y en base a la Resolución Decanal Nº 016-2023-UNS-FI se da inicio la sustentación de la Tesis titulada: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA", presentado por los Bachilleres: BARRIGA GLENI DIEGO RAFAEL con cód. Nº 0201213048 y DE LA CRUZ SÁNCHEZ JERSON ALDAIR con cód. Nº 0201213013, quienes fueron asesorados por la docente Ms. Luz Esther Álvarez Asto, según lo establece la T. Resolución Decanal Nº 282-2019-UNS-FI, de fecha 03.06.2019.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
BARRIGA GLENI DIEGO RAFAEL	15	REGULAR

Siendo la 01 de la tarde del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 19 enero de 2023.

Ms. Julio César Rivasplata Díaz

Presidente

Ms. María Jesús Estela Díaz Hernández

Secretaria

Ms. Luz Esther Álvarez Asto Integrante

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 19 días del mes de enero del año dos mil veintitrés, siendo las 12 horas de la mañana, en el Aula C-1 de la Escuela Profesional de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 554-2022-UNS-CFI,con fecha 25.11.2022, integrado por los siguientes docentes: Ms. Julio César Rivasplata Díaz (Presidente), Ms. María Jesús Estela Díaz Hernández (Secretaria), Ms. Luz Esther Álvarez Asto (Integrante), y Ms. Edgar Gustavo Sparrow Álamo (Accesitario), y en base a la Resolución Decanal Nº 016-2023-UNS-FI se da inicio la sustentación de la Tesis titulada: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA", presentado por los Bachilleres: BARRIGA GLENI DIEGO RAFAEL con cód. Nº 0201213048 y DE LA CRUZ SÁNCHEZ JERSON ALDAIR con cód. Nº 0201213013, quienes fueron asesorados por la docente Ms. Luz Esther Álvarez Asto, según lo establece la T. Resolución Decanal Nº 282-2019-UNS-FI, de fecha 03.06.2019.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
DE LA CRUZ SANCHEZ JERSON ALDAIR	15	REGULAR

Siendo la 01 de la tarde del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 19 enero de 2023.

4Vs. Julio César Rivasplata Díaz

Presidente

Ms. María Jesús Estera Díaz Hernández

Secretaria

Ms. Luz Esther Álvarez Asto Integrante

DEDICATORIA

A Dios, por darme la oportunidad de vivir y guiarme en este largo camino lleno de retos, por darme fuerzas para continuar durante momentos de debilidad, por fortalecer mi corazón e iluminar mi mente. Por permitirme llegar a obtener uno de los anhelos más deseados.

A mis padres, Ángel Rafael y Danila Rosana, por darme la vida, por el apoyo constante que me brindaron en cada momento de mi vida, por los valores inculcados, sus consejos, la confianza, por hacer de mi un ser de bien, pero más que nada, por su gran amor. Con admiración y respeto.

A mi hermana, por estar conmigo y apoyarme siempre, además de ser la motivación para cada día ser mejor persona.

A mis amigos, por su apoyo incondicional en este arduo camino, por compartir conmigo momentos de alegrías, fracasos y demostrarme que siempre poder contar con él.

BACH. BARRIGA GLENI, DIEGO

DEDICATORIA

El presente trabajo de grado va dedicado a Dios, quien como guía estuvo presente en el caminar de mi vida, bendiciéndome y dándome fuerzas para continuar con mis metas trazadas sin desfallecer.

Gracias a mis padres Dorila Sánchez y Gaudencio De La Cruz por su amor, trabajo y sacrificio a lo largo de los años, gracias a ustedes pude estar aquí y ser quien soy ahora. Es un orgullo y honor ser su hijo, son los mejores padres.

Gracias a mi hermana, por estar presentes en esta etapa de mi vida, por brindarme su apoyo espiritual.

A mis amigos y amigas, por su apoyo incondicional en este arduo camino, por compartir conmigo momentos de alegrías, fracasos y demostrarme que siempre poder contar con ellos.

BACH. DE LA CRUZ SÁNCHEZ, JERSON

AGRADECIMIENTO

Queremos expresar nuestra gratitud a Dios, quien nos llena siempre con su bendición, nos acompaña y guía en el transcurso de nuestras vidas, brindándonos sabiduría y paciencia para culminar con éxito nuestras metas propuestas.

Gracias a nuestros padres y hermanas, y a quienes participaron en este trabajo, nos han brindado el apoyo suficiente para que no fallemos en todas las situaciones aparentemente complicadas e imposibles.

Gracias a nuestra Asesora Ing. Luz Esther Álvarez Asto por su asesoramiento y apoyo, pudimos completar este trabajo. Gracias a los ingenieros de la Facultad de Ingeniería Civil, quienes nos han inspirado a convertirnos en talentos y profesionales de la Universidad Nacional Santa con su conocimiento, sabiduría y apoyo.

LOS AUTORES

Índice general

DEDICATORIA	V
AGRADECIMIENTO	VI
Índice general	VII
Índice de tablas	XII
Índice de figuras	XIV
Índice de ecuaciones	XV
RESUMEN	XVI
ABSTRACT	XVII
Capítulo I: INTRODUCCIÓN	3
1.1.Antecedentes del problema	3
1.2.Formulación Del Problema	4
1.2.1.Problema General	4
1.2.2.Problemas específicos	6
1.3.Objetivos	7
1.3.1.Objetivo Principal	7
1.3.2.Objetivos Específicos	7
1.4.Justificación	7
1.5.Limitaciones del trabajo	8
1.6.Formulación De La Hipótesis	8

Capítulo II: MARCO TEÓRICO11
2.1.Antecedentes de la investigación:
2.1.1. Internacional
2.1.2. Nacional
2.2.Base Teórica
2.2.1.Pavimento
2.2.2.Pavimento rígido
2.2.2.1.Elementos del Pavimento rígido
2.2.3.Pavimento flexible
2.2.3.1.Elementos del Pavimento flexible
2.2.4.Pavimento articulado
2.2.5.Tratamiento superficial
2.2.6.Estudios básicos
2.2.6.1.Estudios topográficos
2.2.6.2.Estudios de mecánica de suelos
2.2.6.3.Estudios de tráfico
2.2.6.4.Metodología AASHTO
2.2.7.Evaluación económica y financiera
2.3.Definición de términos
2.4.Marco Normativo

Capitulo III: MATERIALES Y MÉTODOS
3.1.Tipo de investigación
3.2.Nivel de investigación
3.3.Diseño de investigación
3.4.Unidad de análisis
3.5.Ubicación
3.6.Población y Muestra
3.7. Variables
3.7.1. Variable independiente
3.7.2. Variable dependiente
3.7.3.Matriz de consistencia
3.7.4.Operacionalización de variables
3.8. Técnica e Instrumentos de recolección de datos
3.9.Procedimientos
3.9.1.Procedimiento para obtener los parámetros de diseño de pavimento51
Estudio de Trafico
Estudio de mecánica de suelos
Diseño de pavimento según la metodología AASHTO 93-Pavimento Flexible54
Diseño de pavimento según la metodología AASHTO 93-Pavimento Rígido63
Diseño de pavimento según la metodología AASHTO 93-Pavimento Articulado

3.9.2. Procedimiento para comparar el costo de inversión a corto y largo plazo n	mediante los
métodos del Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR). (Virre	ira, 2020)69
Metodología VAN y TIR	69
Capitulo IV: RESULTADOS	75
4.1Análisis e interpretación de resultados	75
4.1.1Alternativa optima de pavimentación	75
-Estudio de mecánica de suelos	75
-Estudio de trafico	75
-Diseño del pavimento flexible	77
-Diseño del pavimento Rígido	79
-Diseño del pavimento Articulado	80
4.1.2Condición estructural	82
4.1.3Condición económica	85
-Metodología VAN y TIR	86
4.2Discusión	100
Capítulo V: CONCLUSIONES Y RECOMENDACIONES	104
5.1Conclusiones	104
5.2Recomendaciones	106
Capítulo VI: REFERENCIAS BIBLIOGRÁFICAS	108
Capítulo VII: ANEXOS	114

7.1Anexo 01 – Estudio de mecánica de suelos114
7.2Anexo 02 – Estudio de tráfico – Conteo de vehículos
7.3Anexo 03 – Estudio de tráfico – Pavimento Flexible
7.4Anexo 04 – Estudio de tráfico – Pavimento Rígido
7.3Anexo 05– Diseño de la estructura del Pavimento flexible
7.4Anexo 06 – Diseño de la estructura del Pavimento rígido
7.5Anexo 07 – Diseño de la estructura del Pavimento articulado
7.6Anexo 08 – Presupuesto del Pavimento flexible
7.7Anexo 09 – Presupuesto del Pavimento rígido
7.8Anexo 10 – Presupuesto del Pavimento articulado
7.9Anexo 11 – Presupuesto del Tratamiento superficial Bicapa + cemento asfaltico185
7.10Anexo 12 – Análisis costo/beneficio de las alternativas de pavimentación
7.11Anexo 13 - Panel Fotográfico
7.3Anexo 14 – Planos

Índice de tablas

Tabla 1 Ensayos para el estudio de suelos.	22
Tabla 2 Tipo de vehículo	25
Tabla 3 Factor de distribución direccional y de carril	26
Tabla 4 Nivel de confiabilidad según la clasificación de la vía.	29
Tabla 5 Criterio de decisión (VAN)	35
Tabla 6Tipo de tráfico según el ESAL	55
Tabla 7Confiablidad -Desviación estándar-Pavimento flexible	56
Tabla 8 Índice de serviciabilidad inicial-pavimento flexible	57
Tabla 9 Índice de serviciabilidad final-pavimento flexible	58
Tabla 10Coeficiente estructural de capa asfáltica – pavimento flexible	60
Tabla 11 Coeficiente estructural de la base – pavimento flexible	61
Tabla 12 Coeficiente estructural de la sub base – pavimento flexible	61
Tabla 13Calidad de drenaje en base al tiempo de evacuación del agua –	62
Tabla 14 Determinación de coeficiente de drenaje- pavimento flexible	62
Tabla 15Índice de serviciabilidad para pavimentos rígidos	63
Tabla 16 Confiablidad -Desviación estándar-Pavimento rígido	64
Tabla 17 Resistencia a la flexotracción del concreto – Pavimento rígido	66
Tabla 18 Coeficiente de transferencia de cargas (J) – Pavimento rígido	66
Tabla 19 Espesores recomendados para pavimentos articulados	68
Tabla 20 Costo de operación vehicular modular a precios económicos	70
Tabla 21Resultado del Estudio de mecánica de suelos	75
Tabla 22Conteo vehicular y cálculo del IMD	75
Tabla 23ESAL para pavimento flexible y articulado.	76
Tabla 24 ESAL para pavimento rígido	76

Tabla 25 Parámetros para el diseño del para pavimento flexible	77
Tabla 26 Alternativa de espesores - Pavimento rígido	77
Tabla 27Parámetros para el diseño del para pavimento rígido	79
Tabla 28Parámetros para el diseño del para pavimento articulado	80
Tabla 29 Alternativa de espesores - Pavimento articulado	80
Tabla 30 Presupuesto de alternativas de pavimentación	85
Tabla 31 Proyección de tráfico con proyecto.	86
Tabla 32 Costos de inversión y mantenimiento a precios sociales	87
Tabla 33Costos de Operación vehicular	88
Tabla 34Beneficios incrementales	89
Tabla 35 Plusvalía de terrenos	90
Tabla 36 Evaluación – VAN y TIR – Pavimento flexible	91
Tabla 37 Evaluación – VAN y TIR – Pavimento rígido	92
Tabla 38 Evaluación – VAN y TIR – Pavimento articulado	93
Tabla 39Evaluación – VAN v TIR – Tratamiento superficial Bicapa + cemento asfaltico	94

Índice de figuras

Figura 1.Estructura del pavimento flexible y rígido.	18
Figura 2. Configuración de ejes	28
Figura 3.Ubicación de la estación de control.	51
Figura 4. Ubicación de calicatas.	53
Figura 5.Monograma de AASHTO	59
Figura 6. Correlación entre el CBR y el Módulo de Reacción de la Subrasante	65
Figura 7 Alternativa 01- Pavimento Flexible	78
Figura 8.Alternativa 02- Pavimento Flexible	78
Figura 9.Alternativa 01- Pavimento Rígido	79
Figura 10.Alternativa 01- Pavimento Rígido	81
Figura 11.Alternativa 02- Pavimento Flexible	81
Figura 12.Diagrama de barras-superficie de rodadura de alternativas de pavimentación	82
Figura 13.Grafico porcentual-superficie de rodadura de alternativas de pavimentación	82
Figura 14.Diagrama de barras-Capa Base de alternativas de pavimentación	83
Figura 15.Grafico porcentual-Capa base de alternativas de pavimentación	83
Figura 16.Diagrama de barras-Capa subbase de alternativas de pavimentación	84
Figura 17.Grafico porcentual- Capa subbase de alternativas de pavimentación	84
Figura 18.Diagrama de barras-Inversión de alternativas de pavimentación	95
Figura 19.Grafico porcentual- Inversion de alternativas de pavimentación	95
Figura 20.Diagrama de barras-VAN de alternativas de pavimentación	96
Figura 21.Grafico porcentual- VAN de alternativas de pavimentación	96
Figura 22.Diagrama de barras-TIR de alternativas de pavimentación	97
Figura 23.Grafico porcentual- TIR de alternativas de pavimentación	97

Índice de ecuaciones

Ecuación 1. Número repeticiones de ejes equivalentes	52
Ecuación 2.ESAL de diseño	
Ecuación 3.Cantidad de material fino que pasa por la malla Nº 200	54
Ecuación 4.Módulo de resiliencia	55
Ecuación 5.Diferencia de serviciabilidad	58
Ecuación 6.Número estructural -AASHTO	59
Ecuación 7.Número estructural -Pavimento flexible	62
Ecuación 8.Modulo de elasticidad del concreto	66
Ecuación 9.Espesor de losa -pavimento rígido	67
Ecuación 10.Costo de operación vehicular	72
Ecuación 11.Beneficio incremental	72
Ecuación 12.Plusvalía	73
Ecuación 13. Valor neto actual	73
Equación 14 TIP	73

RESUMEN

El objetivo principal de la investigación fue determinar el pavimento óptimo estructuralmente y económicamente para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa del distrito de Santa ubicado en el departamento de Ancash. Se ejecuto una investigación Aplicada – Descriptiva con un enfoque mixto, que consistió en obtener los parámetros de diseño de pavimento (flexible, rígido y articulado), luego se evaluó la estructura de 3 tipos de diseño de pavimento (flexible, rígido y articulado) según la metodología AASHTO 93 y el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, y se finalizó realizando un comparativo a corto y largo plazo mediante el Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR). De acuerdo a los resultados obtenidos se concluyó que la zona a pavimentar presenta un suelo muy bueno con un CBR de 10.05%, la vía por pavimentar es una vía de bajo volumen de tránsito con un ESAL de 160,347.26 para el pavimento flexible y articulado, un ESAL de 211,952.024 para el pavimento rígido, el pavimento flexible mostro una capa de rodadura de 5.08 cm, una base de 12.70 cm y una sub base de 10.16, el pavimento rígido mostro una losa de concreto de 10.00 cm y una base de 15.00 cm y el pavimento articulado mostro a adoquines de 6 cm, una capa de 4 cm de arena y una base de 17.78. El pavimento flexible obtuvo un VAN S/555,820.7 y un TIR de 16.25%, el pavimento rígido tiene un VAN de S/256,980.35 y un TIR de 12.55%, el pavimento articulado obtuvo un VAN de S/236,111.78 y un TIR de 12.34 % y el tratamiento superficial obtuvo un VAN de S/718,922.84 y un TIR de 18.51%. Por lo tanto, la alternativa tratamiento superficial Bicapa + cemento Asfaltico resulto tener mayor rentabilidad a corto plazo y a largo plazo.

Palabras claves: Alternativas optimas, Pavimentos, Tratamiento superficial, VAN, TIR.

ABSTRACT

The main objective of the research was to determine the structurally and economically optimal pavement for the study area, the section of the Panamericana Norte km 443 to Puerto Santa in the district of Santa located in the department of Ancash. An Applied -Descriptive investigation was carried out with a mixed approach, which consisted of obtaining the pavement design parameters (flexible, rigid and articulated), then the structure of 3 types of pavement design (flexible, rigid and articulated) was evaluated according to the AASHTO 93 methodology and the Manual of Roads, Soils, Geology, Geotechnics and Pavements, and it was finalized by making a comparison in the short and long term through the Net Present Value (VAN) and Internal Rate of Return (IRR). According to the results obtained, it was concluded that the area to be paved has a very good soil with a CBR of 10.05%, the road to be paved is a low-volume road with an ESAL of 160,347.26 for the flexible and articulated pavement, a ESAL of 211,952.024 for the rigid pavement, the flexible pavement showed a wearing course of 5.08 cm, a base of 12.70 cm and a subbase of 10.16, the rigid pavement showed a concrete slab of 10.00 cm and a base of 15.00 cm and The articulated pavement showed 6 cm paving stones, a 4 cm layer of sand and a base of 17.78. The flexible pavement obtained a VAN S/555,820.7 and a TIR of 16.25%, the rigid pavement has a VAN of S/256,980.35 and a TIR of 12.55%, the articulated pavement obtained a VAN of S/236,111.78 and a TIR of 12.34% and the surface treatment obtained a VAN of S/718,922.84 and a TIR of 18.51%. Therefore, the alternative bilayer surface treatment + asphalt cement turned out to have greater profitability in the short term and in the long term.

Keywords: Optimal Alternative, Pavements, Surface treatment, VAN, TIR.

INTRODUCCIÓN

Desde tiempos remotos, las vías han inducido el desarrollo de la civilización, accediendo a la comunicación entre pueblos y el invariable incremento económico y cultural de las mismas. Dicho incremento se extiende hasta la actualidad, para lo cual se han forjado conocimientos y técnicas para facilitar la construcción de vías de forma más eficiente, dando como resultado la denominada ingeniería de pavimentos.

Cada país ha desarrollado un sistema diferente para emplear esta ingeniería en sus calles. En Perú, el Ministerio de Transporte (MTC) es el responsable de la gestión el camino, sin embargo, el 100 % de pavimentación sigue siendo un objetivo distante, como la MTC lo indicó en su "Diagnóstico de la situación de las brechas de infraestructura o de acceso a servicios" del año 2020, que muestran que antes de la pandemia de COVID-19, las redes nacionales están pavimentado en un 80%, mientras que la red vial sectorial y red vecinal solo lograron tasas de pavimentación del 13% y 2%, respectivamente.

Esta tesis, se desarrolló en capítulos, los cuales son detallados a continuación:

En el CAPITULO I, se exponen los aspectos generales, asimismo la problemática de la investigación, la justificación y formulación de la hipótesis.

En el CAPITULO II, se revelan los antecedentes que son la base de esta investigación, asimismo el marco y aspectos teóricos, siendo este un punto clave, debido a que en el capítulo se despliegan las teorías que establecen la investigación.

En el CAPITULO III, se muestra el tipo de investigación, unidad de análisis, población, muestra, variables, los materiales y métodos e instrumentos usados en la investigación.

En el CAPITULO IV, se muestra el análisis e interpretación de resultados, a y a su vez la discusión de acuerdo a las pruebas y ensayos realizados.

En el CAPITULO V, se muestra las conclusiones y recomendaciones de la investigación.

En el CAPITULO VI, se muestra las referencias bibliográficas y finalmente los anexos de la investigación.

Capítulo I: INTRODUCCIÓN

1.1. Antecedentes del problema

Desde el momento que el hombre uso la rueda en el transporte no solo de mercancía, sino también de ellos mismos, fue evolucionando a su vez los caminos los cuales recorría. A medida que avanzo la tecnología los transportes dejaron de ser simples carrozas atadas a caballos a ser vehículos motorizados y con ello los costos para la realización de estas vías también cambio, sin estar lejos tenemos en un contexto internacional que en Nicaragua Ruiz y Rodríguez (2016), en su investigación: Comparación técnico-económica del uso de pavimento rígido y pavimento flexible en Nicaragua. Estudio de caso: tramo Unikwas-Mulukuku, hace mención que el pavimento que más se ha utilizado en Nicaragua es el pavimento flexible elaborado con mezclas asfálticas en caliente construido en vías de transporte continuo con volúmenes de tránsito moderado. En zonas donde el volumen de tránsito está constituido por vehículos de carga se están construyendo carreteras de pavimento rígido, también en vías interurbanas donde se requiere que el pavimento dure muchos años ya que este pavimento tiene mayor vida útil y es más resistente al paso de cargas ocasionadas por los vehículos, además, tiene menos costos de mantenimiento. Bahamondes (2013), en su investigación: Análisis de métodos de diseño de pavimentos de adoquines de hormigón, hace referencia que los pavimentos representan una parte importante de los activos viales. Deben ser capaces de soportar solicitaciones de tránsito, ambientales y proveer una estructura durable que permita la circulación de los vehículos con comodidad y seguridad.

En un contexto nacional tenemos que en Piura Becerra (2013), en su investigación Comparación técnico-económica de las alternativas del pavimento flexible y rígida a nivel de costo de inversión, menciona que es importante para la evaluación de alternativa de pavimentación tener en cuenta que esta decisión se base siempre en la consideración

de los costos a lo largo de su periodo de diseño, incluyendo por supuesto el costo de construcción.

En un contexto local la zona de Puerto Santa se presenta con una trocha poco apta para el tránsito, ya sea de camiones o transporte liviano, pero siendo ésta la única entrada y salida para el transporte de los productos agrícolas y de los pobladores, es de necesidad evaluar una alternativa de vía óptima, tanto en el aspecto económico, como en el de su construcción, cumpliendo los requisitos para soportar las solicitaciones de tránsito presente en la zona de estudio.

1.2. Formulación Del Problema

1.2.1. Problema General

En Perú la pavimentación de los caminos existentes es un factor importante para el desarrollo de la nación, con esto acortamos tiempos en transporte y costo de movilización, también la conexión más rápida entre pueblos, distritos y departamentos. Pero no siempre el mismo tipo de pavimentación es apto para todas las zonas del Perú, por tener diversas regiones climáticas; además, los sectores rurales suelen ser los más olvidados al momento de la realización de vías pavimentadas y con ello se olvida que también necesitan una conexión vial.

En la actualidad, el camino ubicado en el tramo de la Panamericana Norte km 443 hasta Puerto Santa, es un camino principal para los vehículos pesados que se requieren en el transporte de los productos agrícolas extraídos de sus parcelas y vehículos livianos que son usados para el traslado de los moradores de las zonas habitadas a lo largo del tramo propuesto, el peso de los vehículos de transporte de carga es mayor al soporte que este camino sin pavimentar proporciona, haciendo que se asiente la tierra formando baches de todo tamaño, lo cual daña aún más el camino y reduce la vida útil de los vehículos circulantes.

Se puede apreciar que la zona de investigación cuenta con un 100% de vía sin pavimentar y debido a lo expuesto, hace que sea necesario contar con una pavimentación, lo cual ayudará a evitar el excesivo desgaste de los componentes de los vehículos y otorgarle una mayor vida útil a la que presenta en su actual estado, pero como se expuso líneas arriba no siempre se realiza el mismo tipo de pavimento ya sea por los factores climáticos, terreno de fundación y/o económicos los cuales al evaluarse darán la mejor opción para la construcción de una vía pavimentada.

Esto lleva a preguntar:

¿Cuál será la mejor alternativa entre los pavimentos evaluados estructuralmente y económicamente en el tramo: Panamericana Norte km 443 hasta Puerto Santa?

1.2.2. Problemas específicos

Siendo que Santa es una zona de moderada afluencia pluvial y la mayoría de caminos son de pavimento flexible en la zona céntrica del distrito de Santa que es el lugar aledaño más cercano, existen otras opciones para la realización de pavimentos: pavimento rígido, articulado y tratamientos superficiales. Alguno de estos puede ser muy costosos a corto plazo, pero al pasar de los años puede conllevar a un mayor ahorro. Por lo que se genera la siguiente interrogante:

- ¿Qué parámetros de diseño tendrá el pavimento para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa?
- ¿Cuál pavimento, flexible, rígido, articulado o tratamiento superficial bicapa + cemento asfáltico, presenta un mejor comportamiento estructural para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa?
- ¿Qué pavimento, flexible, rígido, articulado o tratamiento superficial bicapa + cemento asfáltico, presentarán la mejor variación de la relación tiempo/costo?

1.3. Objetivos

1.3.1. Objetivo Principal

 Determinar el pavimento óptimo estructuralmente y económicamente para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa.

1.3.2. Objetivos Específicos

- Obtener los parámetros de diseño de pavimento, mediante el método AASHTO
 93 y el manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos".
- Comparar la estructura del pavimento flexible, pavimento rígido, pavimento articulado y tratamiento superficial bicapa + cemento asfaltico usando el método AASHTO 93.
- Comparar el costo de inversión a corto (1 año) y largo plazo (20 años) mediante los métodos del Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR).

1.4. Justificación

Se justifica socialmente al beneficiar a todos los ciudadanos aledaños a la zona de estudio, al proporcionar la alternativa óptima de pavimentación, que ayudará a la transitabilidad de la zona y comodidad en los transeúntes.

Se justifica económicamente al evaluar la alternativa de pavimentación entre el pavimento flexible, pavimento rígido, pavimento articulado y tratamiento superficial bicapa + cemento asfáltico, presentar mayor rentabilidad en un periodo de 1 a 20 años teniendo en cuenta los métodos del Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR).

Se justifica técnicamente al usar la metodología AASHTO 93 complementado con el Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos" para calcular y obtener las variables de diseño con respecto a las características del suelo, medio ambiente, clima y volumen de tráfico, además de los espesores de pavimento que llegara

a ser óptimo en la zona de estudio.

Se justifica académicamente al aplicar los conocimientos y metodologías estudiadas en toda la categoría de suelos y pavimentos, para determinar la alternativa optima de pavimentación, donde se está dando como opción el tratamiento superficial bicapa + cemento asfáltico como una propuesta diferente de los tipos pavimentos convencionales en la zona de estudio del tramo de la Panamericana Norte km 443 hasta Puerto Santa.

1.5. Limitaciones del trabajo

Se tuvieron las siguientes limitaciones:

- -Limitaciones sociales: el acceso a la población y a la zona de estudio era restringido en tiempos de pandemia.
- -Limitaciones económicas: los estudios de Mecánica de suelos y topográficos resultaron ser más costosos de lo previsto debido a la pandemia y el toque de queda presentado en este tiempo, nos vimos en la necesidad de movilizarnos en días específicos, por lo cual se tuvo que ampliar el tiempo para realizar estos ensayos y el costo previsto de viáticos hacia el laboratorio de la facultad de ingeniería civil de la UNS y terreno de estudio sean mayores, lo cual supuso un mayor gasto e inclusive llegando a terminar los ensayos en otro laboratorio por el cierre temporal de este en la UNS.
- Limitaciones técnicas: en la metodología AASHTO 93 los coeficientes estructurales o de capa, el módulo de resiliencia y los factores de drenaje tienen una gran importancia en la determinación de los espesores de pavimentos, ya que estos demandan procedimientos cuyos equipos y ensayos son de escasa aplicación y costosas en nuestro país.


1.6. Formulación De La Hipótesis

El tratamiento superficial bicapa + cemento asfáltico es la alternativa óptima de pavimentación en comparación con las otras alternativas como pavimento flexible, pavimento rígido o pavimento articulado, porque presentan condiciones económicas más

rentables a corto y largo plazo para el tramo: Panamericana Norte Km 443 hasta Puerto Santa.

MARCO TEÓRICO

Capítulo II: MARCO TEÓRICO

2.1. Antecedentes de la investigación:

2.1.1. Internacional

Bedón (2021), realizó una investigación Aplicada-Descriptiva, ostentó como objetivo establecer un programa interactivo que solucione las ecuaciones de la metodología AASHTO 93 para el diseño de pavimentos y empleó un enfoque cuantitativo. La población y muestra estuvo compuesta por el pavimento de la vía Cercopamba ubicada en la parroquia metropolitana rural Guayllabamba, perteneciente al cantón Quito, provincia de Pichincha. Se llegó a la conclusión que el programa creado mediante la extensión "App Designer" en MATLAB resuelve las ecuaciones de diseño de la metodología AASHTO 93, manifestando que el programa es funcional al obtener resultados similares a los obtenidos manualmente al aplicar las ecuaciones de la metodología AASHTO 93.

Fuertes y Villacis (2019), realizó una investigación Aplicada-Descriptiva, ostentó como objetivo analizar técnicamente y económicamente las alternativas de pavimentos utilizando el software Highway Development & Management (HDM-4) y empleó un enfoque cuantitativo. cuantitativo. La población y muestra estuvo compuesta por alternativas de pavimentos para la vía Nanegal – Palmitopamba ubicada en el Cantón Quito Provincia de Pichincha. Se llego a la conclusión que entre las 4 alternativas de pavimentación (la alternativa 1 está constituida de una base granular estabilizada con asfalto y un doble tratamiento superficial bituminoso, la alternativa 2 consta de base granular estabilizada con cemento y de igual manera con un doble tratamiento superficial bituminoso, la alternativa tres y cuatro están conformadas por una base granular y carpeta asfáltica mezclado en frío y en caliente respectivamente), Según los

Valores VAN y la TIR la alternativa 3 es la que mayores ventajas ofrecerá sobre las

demás tanto en cuestión de inversiones y beneficios que se obtendrán de la misma.

Lozada (2018), efectúo una investigación Aplicada-Descriptiva con un enfoque

cuantitativo, ostentó como objetivo realizar estudio definitivo de la estructura del

pavimento de la red vial Urbanización los Pinos, para el cual se diseñaron dos tipos de

pavimentos, flexible y semiflexible, se compara técnica y económicamente, y presenta

como población y muestra al pavimento flexible y semiflexible para la urbanización

Los Pinos, ubicada en la parroquia Cutuglahua, cantón Mejía, provincia Pichincha. Se

llegó a la conclusión que ambas alternativas son aceptables y rentables y que entre las

dos alternativas la que presenta mayor beneficio es el pavimento semiflexible

(adoquinado).

Lorja y Sarmiento (2018), efectuaron una investigación Aplicada-Descriptiva,

ostentaron como objetivo realizar el diseño de pavimento flexible para la reconstrucción

de las vías: Av. Samuel Cisneros, Av. Principal 5 de junio, Av. Jaime Nebot, Av. Juan

León Mera, Vía de Acceso 3M, Provincia del Guayas y emplearon un enfoque

cuantitativo. La población y muestra estuvo compuesta por el pavimento flexible de las

vías en reconstrucción mencionadas líneas arriba. Se llegó a la conclusión que los

espesores de pavimento obtenidos según la metodología AASHTO – 93 son de 102 cm

para mejoramiento, 45 cm para sub-base, 33 cm para base y 10 cm para capa de

rodadura.

2.1.2. Nacional

Gallardo y Pescoran (2019), realizaron una investigación Aplicada-Descriptiva que

tuvo como objetivo realizar el análisis comparativo técnico – económico del pavimento

flexible y pavimento rígido para la avenida Larco tramo avenida Huamán y avenida

Fátima de la ciudad de Trujillo. El enfoque de la investigación fue cuantitativo y presentó como población y muestra al pavimento para la avenida Larco tramo avenida Huamán y avenida Fátima de la ciudad de Trujillo. Se llegó a la conclusión que los espesores de pavimento flexible obtenidos según la metodología AASHTO-93 son de 15 cm para la subbase, 20 cm para base y 10 cm para capa asfáltica; los espesores para pavimento rígido, aplicando la misma metodología son de, 15 cm para la base y 20 cm para la losa de concreto, desde el punto de vista económico el pavimento flexible es más conveniente, teniendo un presupuesto de S/1'468,620.67 a diferencia del pavimento rígido, con un presupuesto de S/2'152,674.75. La decisión para pavimentar está en las autoridades de la zona.

Azaña (2018), efectuó una investigación Aplicada-Descriptiva, teniendo como objetivo analizar la mejor alternativa de pavimentación para las vías de circulación de la Urbanización El Pinar – Centro Poblado de Mariam, Independencia, Huaraz. El enfoque de la investigación fue cuantitativo y presentó como población y muestra a la vía Urbanización El Pinar del Centro Poblado de Mariam ubicada en Huaraz. Se llegó a la conclusión que el pavimento rígido es más conveniente teniendo un espesor de 15 cm para la subbase y 15 cm para carpeta de rodadura a diferencia del pavimento flexible que cuenta con un espesor de 20 cm para subbase, 10 cm para base y 6 cm para carpeta asfáltica. Se obtuvo mediante el método de valor actual neto (VAN) que el pavimento rígido es de S/ 668,073.46 y para el pavimento flexible es de S/ 1'005,189.31. Al tener los mismos beneficios se concluyó que conllevara un mayor beneficio económico evaluado en un periodo de 20 años.

Franco y Vargas (2022), efectuaron una investigación Aplicada-Descriptiva, ostentando como objetivo comparar de manera Técnica y Económica los pavimentos flexible y rígido. El enfoque de la investigación fue cuantitativo y presenta como población y muestra al pavimento del Sector Villa Judicial — Distrito de Huanchaco. En esta investigación se concluyó que la solución óptima es el pavimento flexible usando como diseño la metodología de AASHTO-93 obteniendo como resultado el espesor de 12.5 cm de subbase, 20 cm de base y 7.5 cm de carpeta de rodadura; a diferencia del pavimento rígido que tiene 15 cm de base y 17.5 cm de espesor de losa; del pavimento articulado que son de 27.5 cm de base granular y 8 cm de adoquín de concreto; ya que en su evaluación económica se obtuvo un presupuesto inicial de S/4'461,709.49 mientras que el pavimento rígido que tiene S/6'364,358.31 y el pavimento articulado que cuenta con S/6'257,988.81.

2.2. Base Teórica

2.2.1. Payimento

Según Amaya y Toribio (2022), el pavimento es la capa o el conjunto de capas de materiales escogidos que soporta de forma directa las cargas del tránsito vehicular y estas las transmiten hacia el suelo en forma disipada dentro de un periodo de serviciabilidad.

Según Terán y Sandoval (2021), el pavimento es un conjunto de capas ubicado sobre el terreno natural o subrasante de suelo que debe nivelar y ayudar a soportar esfuerzos que conducen a la sobrecarga de tráfico. Suele estar formado por una capa base, una subbase y una capa asfáltica.

2.2.2. Pavimento rígido

Según Amaya y Toribio (2022), el pavimento rígido es una losa de hormigón simple o de hormigón armado, que se coloca directamente sobre la base o subbase. Debido a su rigidez y alto módulo, reciben gran parte del esfuerzo elástico, también producen una buena distribución de la carga, lo que resulta en esfuerzos bajos en la subrasante.

Según Vega (2018), los pavimentos rígidos se encuentran constituidos por una losa de concreto apoyada directamente sobre la subrasante o sobre una capa de material seleccionado. Como solo existe una capa entre la losa de concreto y la subrasante, esta puede ser llamada base. La necesidad de utilizar la base surge solo si la subrasante no tiene las condiciones necesarias como para resistir las cargas de tráfico; es decir, que no actúe como un soporte adecuado.

2.2.2.1. Elementos del Pavimento rígido

Las capas que conforman el pavimento rígido son las siguientes: Subrasante, sub base y losa.

- Según Terán y Sandoval (2021) indicó: "La subrasante es el soporte natural que cumple la función de dar un apoyo uniforme o estable a que tenga una alta capacidad de soporte"
- Según Terán y Sandoval (2021) indicó:

La subbase es parte de la estructura de pavimento rígido, se ubica entre la subrasante y la losa rígida. Está hecho de material granular o también conocido como material estabilizador. Tiene la función de impedir el bombeo de suelos de grano fino.

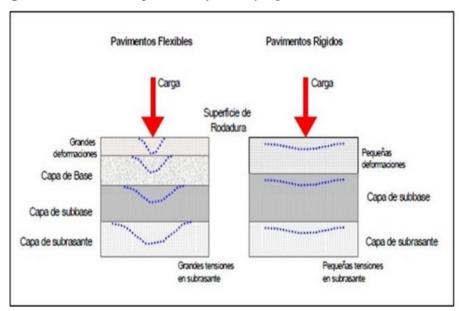
- Según Terán y Sandoval (2021) indicó:

La losa es la capa que se encuentra ubicada en la parte superior de la estructura de un pavimento rígido, se caracterizan por tener un alto módulo de elasticidad y rigidez, lo que les permite basar su capacidad de tolerar los esfuerzos producidos por el tránsito más en la losa que en la capacidad portante del suelo. Concreto el material del que está hecha la losa de la calzada es el cemento Portland.

2.2.3. Pavimento flexible

Amaya y Toribio (2022) mencionó: "el pavimento que su estructura flexiona según las cargas que actúan sobre él, se caracteriza por tener una capa bituminosa, la cual se apoyan de la base y sub base".

Según Enríquez y Mena (2018), compuesto por capas granulares (subbase y base de agotamiento) y una superficie bituminosa fría como un tratamiento de superficie de bicapa, lechada asfáltica o mortero negro-superior, micro pavimento frío, macadán superior negro, cubiertas frías superior negro y así sucesivamente.


Según Chávez (2018), el pavimento flexible es aquel que se caracteriza por estar conformado en la superficie por una capa de material bituminoso o mezcla asfáltica que se apoya sobre capas de material granular, las cuales generalmente van disminuyendo su calidad conforme se acercan más a la subrasante.

2.2.3.1. Elementos del Pavimento flexible

- Según Amaya y Toribio (2022), la subrasante es una capa la cual está conformada por material de préstamo que permite optimizar la base del pavimento, esta es compactada llegando a conformar parte del terreno de fundación.
- Según Amaya y Toribio (2022), la subbase es una de las capas que se halla ubicado entre la subrasante y base, generalmente es de una capa compactada de material granular sin tratar o también de suelo tratado con un aditivo idóneo, hay situaciones que excluyen la capa subbase debido a que el suelo es de una buena calidad.
- Según Amaya y Toribio (2022), la capa base se encuentra debajo de la capa de desgaste y una de sus funciones principales es la de actuar como soporte estructural, generalmente esta capa se compone de los siguientes tipos de agregados: piedra triturada, escoria, grava triturada, arena u otras combinaciones, y los aditivos pueden ser usado. Las especificaciones de los materiales de esta capa deben ser más estrictas ya que deben cumplir con la resistencia, plasticidad y granulometría. (Amaya y Toribio,2022)
- Según Amaya y Toribio (2022), la capa de rodadura es la última capa expuesta a la intemperie y está formada por áridos minerales y materiales bituminosos, por otro lado, además de reducir la cantidad de superficie de agua, también debe ser capaz de resistir las fuerzas abrasivas del tráfico. Por otro lado, la capa debe proporcionar una superficie antideslizante y uniforme.

Figura 1. Estructura del pavimento flexible y rígido.

Fuente: (Terán y Sandoval,2021)

2.2.4. Pavimento articulado

Según Franco y Vargas (2021), son estructuras que presentan por capa de rodadura a bloques de concretos prefabricados o de piedra natural (adoquines), esta capa se apoya sobre arena gruesa y está a su vez en una base granular compactada. Esta capa base granular compactada puede obviarse si el terreno de fundación presenta buenas propiedades.

Según Diaz (2018), es aquel pavimento que tiene como capa de rodamiento, elementos prefabricados de pequeñas dimensiones que individualmente poseen alta resistencia, denominados adoquines, que se encuentran unidos entre sí por un sellante que los retiene y ayuda a impermeabilizar la estructura. Debido a su entrelazado y a la conformación de sus caras laterales, permiten una transferencia de cargas desde el elemento que las recibe hacia varios de sus adyacentes, trabajando sólidamente y sin posibilidad de desmontaje individual.

Según López y Yánez (2018), los pavimentos articulados están compuestos por una capa de rodadura elaborada con piezas de concreto prefabricadas, llamadas adoquines, estos deben tener una resistencia adecuada para soportar las cargas del tránsito y el desgaste.

2.2.5. Tratamiento superficial

Según Arévalo y Diaz (2021), un tratamiento superficial reside en un pavimento asfáltico construido en forma estratificada y compactada, conformado por un producto bituminoso y un agregado pétreo, que se ubican por separado, el cual dependiendo del número de capas se conocen como de un solo riego, doble riego y triple riego.

Según Condor (2016), los tratamientos superficiales tienen como principal objetivo mantener las condiciones de servicio del pavimento y su buen estado alargando así su vida útil, este término cubre generalmente todas las aplicaciones de asfalto, con o sin agregados a cualquier tipo de camino o superficie de pavimentos flexibles, pero cuyo espesor final es por lo general inferior a 25 mm (una pulgada). Los tratamientos superficiales varían desde una simple y ligera aplicación de cemento asfáltico, sobre los cuales distribuyen agregados pétreos, hasta mezclas con espesores de hasta 2.5 cm. Todos los tratamientos superficiales sellan y prolongan la vida de los caminos, teniendo cada uno propósitos especiales.

Según Delgado (2020), consiste en la aplicación de una película continua de Emulsión Asfáltica, seguida por la distribución y compactación de una capa de áridos. La secuencia puede ser repetitiva varias veces generando así los distintos tipos de tratamiento, desde monocapa hasta las múltiples.

Según Morante (2019), indicó los tipos de tratamiento superficiales en función al tipo de riego:

Riegos monocapa: una aplicación de ligante y una capa de gravilla. Se denominan simples tratamientos superficiales.

Riegos bicapa: dos aplicaciones sucesivas de ligante y árido. Se denominan dobles tratamientos superficiales.

Riegos monocapa doble engravillado: un riego de ligante seguido de una capa de grava gruesa y otra más fina que ocupe los huecos.

Riegos sándwich: una capa de grava, luego riego de ligante y otra capa de gravilla más fina.

Riegos multicapa: múltiples capas de gravilla regadas con ligante. Destacan los triples tratamientos superficiales, aunque están en desuso respecto al uso de una capa delgada de aglomerado asfáltico.

Tratamiento superficial con mortero asfaltico:

Según Arévalo y Diaz (2021), este tratamiento superficial consiste en una o varias

capas de mezcla compactada de asfalto líquido y áridos minerales, producida en

fábricas especializadas o in situ mediante máquinas capaces de mezclar áridos y

asfalto en la superficie de la carretera. Este tipo de tratamiento superficial se utiliza

o puede utilizarse como capa portante de tráfico ligero y medio, como cimentación

de pavimentos flexibles de tráfico medio y pesado, o como capa intermedia.

El Ministerio de transporte y comunicaciones recomienda los siguientes espesores

para Tratamientos Superficiales Bicapa (TSB) en un Periodo de diseño 20 años:

CBR<10 – Base: 30.00 cm y subbase 20.00 cm

CBR>10 – Base: 25.00 cm y subbase 20.00 cm

2.2.6. Estudios básicos

2.2.6.1. Estudios topográficos

Según Amaya y Toribio (2022), es uno de los estudios más importantes en el

desarrollo de diferentes proyectos de construcción, como infraestructura vial, por

ello, previo a los estudios de mecánica de suelos y diseño de pavimentos, se debe

realizar un levantamiento topográfico, en el cual se recopilan los datos para

comprender la geometría del terreno natural y obtener secciones longitudinales y

transversales.

2.2.6.2. Estudios de mecánica de suelos

Según Amaya y Toribio (2022), mediante estos estudios indicados en la Tabla 1 se obtendrá los parámetros para poder diseñar el pavimento, debido a que el pavimento se asienta sobre el terreno natural o terreno modificado. Por lo cual se realiza este estudio para conocer las características del terreno de fundación, esto permitirá obtener las dimensiones que tendrá la estructura del pavimento.

Tabla 1Ensayos para el estudio de suelos.

Norma	Denominación
NTP 339.127	Método De Ensayo Para Determinar El Contenido De Humedad De Un Suelo
NTP 339.128	Método De Ensayo Para Análisis Granulométrico
	Método De Ensayo Para Determinar El Límite
NTP 339.129	Líquido, Límite Plástico, E Indica De Plasticidad De
	Suelos
NTP 339.132	Método De Ensayo Para Determinar El Material
N1P 339.132	Que Pasa El Tamiz N° 200
NTP 339.134	Método Para La Clasificación De Suelos Con
N1F 337.134	Propósitos De Ingeniería S.U.C.S.
NTP 339.135	Clasificación De Suelos Para Uso En Vías De
N1F 339.133	Transporte.
	Determinación Del Cbr (California Bearing Ratio valor Soporte De
NTP 339.145	California) Medido En Muestras
	Compactadas En Laboratorio
ASTM D2049	Ensayo De Densidad Relativa

Fuente: Norma Técnica CE.010 Pavimentos Urbanos

2.2.6.3. Estudios de tráfico

Según Amaya y Toribio (2022), este estudio permitirá conocer el efecto que ocasiona una carga de eje, que puede ser representado por un número de cargas por eje equivalente de 18 kips (lb·s²/ft). Mediante el estudio de tráfico se hallará el índice medio diario.

Según Franco y Vargas (2021), es de vital importancia en el diseño de pavimentos y será el estudio que nos permita estimar la carga soportada por la estructura durante su vida útil. Teniendo como principal producto el IMDA (índice medio diario anual), el cual representa la cantidad de vehículos que circulan o circularán sobre el pavimento durante un día común.

Según afirma Montejo (2002), existen tres métodos para estimar el volumen de tránsito o IMDA de la vía a diseñar: realizar el estudio directamente en la ubicación de la nueva vía, utilizar los valores tránsito en una vía alterna a la que se pretende diseñar o realizar el conteo en una vía que estimamos tendrá características similares a la vía que se erigirá. De los casos anteriores, si se realiza el conteo ubicándonos en la misma vía, será necesario realizar el cálculo de la proyección del tránsito; sin embargo, si tomamos los datos de la vía de características similares a futuro, podremos trabajar directamente con ellos. Cabe resaltar que el objetivo final del estudio de tránsito no es determinar solo el IMDA, sino realizar el cálculo de los ejes equivalentes, que son la representación de la carga transmitida al pavimento por los vehículos a través de sus neumáticos.

2.2.6.3.1. Clasificación de vehículos

Vehículos livianos:

Según Sánchez (2021), son vehículos de pasajeros que tienen dos ejes y cuatro ruedas. Se incluyen en esta denominación los automóviles, camperos, camionetas y las unidades ligeras de pasajeros y carga como se indica en la Tabla 2.

Vehículos Pesados:

Según Sánchez (2021), se tiene a los camiones y autobuses. Para esta clasificación se tiene en cuenta el radio mínimo de giro, las ampliaciones o sobre anchos necesarios en las curvas horizontales, tales como distancia entre ejes extremos, ancho total de la huella y vuelos delantero y trasero.

- Vehículos especiales:

Según Sánchez (2021), son los camiones y remolques especiales para el traslado de madera y entro otros materiales. Así como también los vehículos deportivos y de tracción animal.

Tabla 2Tipo de vehículo

Tipos de vel	nículo	Número de ejes	Características	Símbolo	
X7.1.7. 1	Automóviles	Ţ.	2 ejes y 4 ruedas	Ap	
Vehículos	Camperos	2	2 ejes y 4 ruedas	Ap	
ligeros	Camionetas		2 ejes y 4 ruedas	Ac	
		2	Autobuses de 2	В	
		2	ejes y 6 ruedas	В	
			Camiones en		
		2	unidad rígida de 2	C2	
			ejes		
			Camiones en		
		3	unidad rígida de 3	C3	
			ejes		
			Camiones con 2		
		2	ejes en el tractor	F2 G1	
		3	y 1 eje en el	T2-S1	
			semi-remolque		
			Camiones con 2		
Vehículos	Camiones		ejes en el tractor	ma «a	
pesados		4	y 2 eje en el	T2-S2	
			semi-remolque		
			Camiones con 3		
		_	ejes en el tractor		
		5	y 2 eje en el semi-		
			remolque		
			Camiones con 2	T3-S2	
			ejes en el tractor,		
			1 eje en el semi-		
		5	remolque y 2 ejes		
			en el remolque		
			Otras		
			combinaciones		
	Camiones y/o				
	remolques				
	especiales				
	r				
Vehículos	Maquinaria	Variable			
especiales	agrícola				
	Bicicletas y				
	motocicletas				
	Otros				

Fuente: (Ministerio de transporte y comunicaciones, 2013)

2.2.6.3.2. Crecimiento de Tránsito

Según Sánchez (2021), toda vía deber ser diseñada para tolerar un volumen de tráfico que incrementará con el paso de los años. Con el fin de garantizar el nivel de serviciabilidad óptima de la vía en un periodo de 20 años.

Tabla 3Factor de distribución direccional y de carril

N° de calzadas	N° de sentidos	N° de carriles por sentido	Factor direccional (Fd)	Factor carril (Fc)	Factor ponderado Fd x Fc para carril de diseño
	1 sentido	1	1	1	1
1 calzada					
(para IMDA	1 sentido	2	1	0.8	0.8
total de la					
calzada)	1 sentido	3	1	0.6	0.6
ou.zudu)	1 sentido	4	1	0.5	0.5
	2 sentidos	1	0.5	1	0.5
	2 sentidos	2	0.5	0.8	0.4
2 calzadas con	2 sentidos	1	0.5	1	0.5
separador central	2 sentidos	2	0.5	0.8	0.4
(para	2 senudos	<i>L</i>	0.5	0.0	0.4
IMDA			0. =	0.5	0.0
total de las	2 sentidos	3	0.5	0.6	0.3
dos calzadas)	2 sentidos	4	0.5	0.5	0.25
carzadas)					

Fuente: (Ministerio de transporte y comunicaciones, 2013)

2.2.6.3.3. Volúmenes de tránsito

Según Sánchez (2021), los valores obtenidos a partir de estos parámetros se expresan en función del tiempo y permiten desarrollar métodos que permitan estimar razonablemente la calidad de servicio que brinda el sistema.

- Volúmenes de tránsito absoluto o totales
 Sánchez (2021), indicó: "es el número total de vehículos en circulación en un momento dado. Dependiendo de la duración de un periodo de tiempo".
- Volúmenes de Tránsito Promedio Diarios
 Sánchez (2021), indicó: "es el número total de vehículos que circulan en un lapso de tiempo dado, igual o menor a un año y mayor que un día, dividido por el número de días del periodo".

2.2.6.3.4. Número de Repeticiones de Ejes Equivalentes (8.2 ton)

Sánchez (2021), indicó: "Es la repercusión producida sobre el pavimento por un eje simple de dos ruedas convencionales cargando con 8.2 ton de peso, con neumáticos a la presión de 80 lbs/pulg²".

- Eje equivalente para cada tipo de vehículo pesado
 Según Sánchez (2021), este parámetro se obtiene del Índice Medio Diario
 (IMD) por cada tipo de vehículo pesado, por el factor direccional, por el factor carril de diseño, por el factor vehículo pesado del tipo seleccionado y por el factor de presión de neumáticos.
- En la figura 2 se presenta la configuración de los ejes:

Figura 2. Configuración de ejes

Conjunto de Eje (s)	Nomenclatura	Nº de Neumáticos	Grafico
EJE SIMPLE (Con Rueda Simple)	1RS	02	
EJE SIMPLE (Con Rueda Doble)	1RD	04	
EJE TANDEM (1 Eje Rueda Simple + 1 Eje Rueda Doble)	1RS + 1RD	06	
EJE TANDEM (2 Ejes Rueda Doble)	2RD	08	
EJE TRIDEM (1 Rueda Simple + 2 Ejes Rueda Doble)	1RS * 2RD	10	
EJE TRIDEM (3 Ejes Rueda Dobie)	3RD	12	

Fuente: (Ministerio de transporte y comunicaciones, 2014)

2.2.6.4. Metodología AASHTO

Amaya y Toribio (2022), indicó: "fue desarrollado en Ottawa; el método fue la base para la ecuación de desempeño empírico, que todavía se usa hoy en día como un modelo básico para guiar el diseño de pavimentos"

2.2.6.4.1. Periodo de Diseño

Según Amaya y Toribio (2022), este parámetro para pavimentos nuevos es de acuerdo a la clasificación de la vía y la zona a ejecutar, por lo cual el Ingeniero de diseño debe evaluar, esto puede ser cambiado según los requerimientos de las entidades responsables.

2.2.6.4.2. Ecuación y variables de diseño

La metodología AASHTO brinda una ecuación teniendo en cuenta las siguientes variables:

- Tráfico para el periodo de diseño (W18): Es el número acumulado de ejes simples equivalentes a 18 kips ó 80 KN para un periodo de diseño.
- Confiabilidad (% R): parámetro para introducir cierto grado de certeza en el proceso de diseño para garantizar que las diferentes alternativas de diseño persistirán durante todo el período de análisis.

Tabla 4Nivel de confiabilidad según la clasificación de la vía.

	Nivel confiabilidad				
Clasificación Funcional	recomendado				
	Urbano	Rural			
Interestatal y otras vías					
libres	85-99	80-99.9			
Arterias principales	80-99	75-95			
Colectoras	80-95	75-95			
Locales	50-80	50-80			

Fuente: (Adaptada de AASHTO,1993)

- Desviación estándar total (So): Varianza en las mediciones de los parámetros de acuerdo a las cargas y volúmenes de tránsito, también se considera otros factores que afecten el comportamiento del pavimento a lo largo de su vida útil.
- Módulo de resiliencia (Mr): Es una medida de la capacidad los materiales para almacenar o absorber energía sin deformación permanente, es decir, es una propiedad dentro del límite proporcional del material. Cuando un material se somete a un ensayo de carga repetida, al inicio de la aplicación de carga, se da una deformación permanente y al mismo tiempo una deformación recuperable, conforme aumenta el número de repeticiones carga, la deformación plástica va disminuyendo y la deformación pasa a ser prácticamente toda recuperable.
- Serviciabilidad: es el índice que ofrece el servicio y la comodidad a la población usuaria de una vía y es realizada por el usuario después de haberse ejecutado la construcción de la vía.
- Coeficiente de drenaje (Cd): Este coeficiente depende de 2 parámetros (Capacidad de drenaje y el porcentaje de tiempo). El primer parámetro es el tiempo que demora el agua en salir del pavimento y el segundo parámetro es la duración de exposición de un pavimento a distintos niveles de humedad.
- Número estructural (SN): es una representación del espesor total de todo el pavimento, pero para ello se debe convertir al espesor efectivo de cada capa que conforma el paquete estructural utilizando el factor estructural.

2.2.7. Evaluación económica y financiera

Ingresos:

Según Lozada (2018), los ingresos comprenden los beneficios que tendrá el proyecto una vez ejecutado, como producción, plusvalía y mejoramiento del nivel de vida de los ciudadanos que utilizan las vías.

Los beneficios están conformados por el ahorro de recursos en la operación de vehículos, ahorros de tiempo de los usuarios, otros ahorros cuantificados. (Sistema Nacional de Inversión Pública, pág. 30)

Costos de operación vehicular:

Según Azaña (2018), en los costos de operación vehicular está implicado los costos de remuneración, combustible, lubricantes, neumáticos, repuestos, mantenimiento, depreciación; el Ministerio de transporte y comunicaciones para cualquier tipo de vehículo, región, topografía, superficie y estado de la vía.

Precios sociales:

Según el Ministerio de Economía y finanzas, representan la valoración económica de los beneficios y costos económicos, que el proyecto impone a la sociedad en su conjunto, por el hecho de producir bienes y utilizar insumos.

El Ministerio de Economía y finanzas proporciona una guía simplificada denominada: Aplicativo de la Guía Simplificada Caminos Vecinales- Análisis Costo Beneficio, el presente aplicativo establece un instrumento que posee como objetivo orientar de manera práctica la formulación y evaluación de Proyectos de Inversión Pública (PIP) de caminos vecinales.

Los precios sociales de la producción de bienes o servicios miden el verdadero efecto económico que la producción del Proyecto de inversión tiene sobre la sociedad. Este efecto se manifiesta, porque dicha producción:

- Aumenta la disponibilidad del bien o servicio en la sociedad.
- Disminuye la cantidad producida del bien o servicio por otros productores.

Por tal motivo, los precios sociales pueden diferir de los privados, principalmente por las siguientes razones:

- Cuando no hay precio debido a que cobrar es más caro que no hacerlo (existencia de bienes públicos),
- Impuestos o subsidios distorsionadores en los mercados de productos e insumos,
- Poder monopólico o monopsónico en los mercados de productos e insumos,
- Externalidades en los mercados de insumos y productos (lo cual es poco usual).
 En ese sentido, los precios sociales representan la valoración económica de los beneficios y costos económicos, que el proyecto impone a la sociedad en su conjunto, por el hecho de producir bienes y utilizar insumos.

Plusvalía:

Acuña (2012) indico: "Aumento del valor de una cosa, especialmente un bien inmueble, por circunstancias extrínsecas e independientes de cualquier mejora realizada en ella".

La plusvalía destina un incremento de valor generado y obtenido en una operación económica (de tipo bursátil o inmobiliaria, por ejemplo).

Según Soria (2018), la Plusvalía Urbana, resulta un plus al valor del terreno, pues es un elemento clave en el cambio de las regulaciones urbanísticas y en la ejecución de obras públicas que permiten el desarrollo del terreno. Además de concebirse teóricamente como un mecanismo de regulación del mercado que se articula a los instrumentos de gestión del suelo para recuperar hacia y como un derecho de la colectividad. Los incrementos de los precios de la tierra derivados de la acción del

Estado, presenta características propias de tributos de carácter dinámicos y progresivos, pues su ocurrencia y generación está ligada a hechos y decisiones urbanísticas que no tienen una temporalidad rígida, sino que están ligadas a la dinámica económica y urbana.

Egresos:

Lozada (2018) indico: "Los egresos están relacionados a las salidas de dinero que tendrá el proyecto una vez ejecutado dichos salidas de dinero como mantenimiento de la vía (rutinario y periódico)".

Mantenimiento vial:

Lozada (2018) indico: "El mantenimiento es una acción que se alcanza como un conjunto de operaciones que deben ejecutarse para proteger la estructura del pavimento y su grado de serviciabilidad".

Mantenimiento Rutinario.

Según el Ministerio de Transporte y Comunicaciones (2006), es un conjunto de actividades que se realizan de forma permanente a lo largo de la vía y en diferentes tramos de la misma todos los días. Su objetivo principal es preservar todos los elementos de la calzada con la mínima alteración o daño, y preservar tanto como sea posible su condición después de la construcción o restauración. Debe ser preventivo e incluir en este mantenimiento las actividades de limpieza de obras de drenaje, corte de vegetación y reparación de defectos puntuales en andenes, etc. Los sistemas de mantenimiento vial tercerizados también incluyen actividades socioambientales, atención de emergencias viales menores y cuidado y vigilancia vial.

Según Lozada (2018), actividades de reparación y/o prevención que se ejecutan en forma perenne para corregir insuficiencias en la vía o, los trabajos que admitan almacenar la vía en buen estado de servicio. El programa de mantenimiento habitual

resulta de las observaciones en las que se levanta la información de las particularidades viales a conservar.

Mantenimiento Periódico.

Según Lozada (2018), actividades de mayor dilación que se solicitan en forma incesante y que poseen como fin exclusivamente restablecer particularidades que anteriormente poseía la vía, pero que se han perdido por la operación de tráfico, lluvia, etc. La determinación del programa de mantenimiento reiterado, resulta de la estimación estructural y funcional de las vías; los tipos de procedimiento y sus cantidades trascienden del estudio.

Valor neto actual:

Lozada (2018) indico: "Valor Actual Neto o Valor Presente Neto (VAN o VPN), es un indicador financiero sirve para determinar la viabilidad de un proyecto es muy útil para definir la mejor opción dentro de un mismo proyecto".

Según Azaña (2018), este indicador consiste en traducir los flujos de beneficios y costos en valor presente, calculando el valor neto presente de los beneficios menos los costos. El VAN o NPV es el valor monetario de descontar beneficios menos costos, los cuales son descontados usando una tasa de descuento para permitir sus valores presentes.

Según Pacheco (2020), la teoría del Valor Actual Neto (VAN) permite saber si un proyecto es viable o no. Es un procedimiento que consiste en calcular un número determinado de flujos de caja futuros de un determinado proyecto, para luego descontarlos al año 0 del proyecto. Si la inversión inicial es mayor a los flujos de caja descontados, entonces el proyecto no se realiza, caso contrario, el proyecto debería ser ejecutado.

Según Torrez y Paredes (2017), el VAN es un indicador financiero que mide los flujos de los futuros ingresos y egresos que tendrá un proyecto, para determinar, si luego de descontar la inversión inicial, nos quedaría alguna ganancia. Si el resultado es positivo, el proyecto es viable. Basta con hallar VAN de un proyecto de inversión para saber si dicho proyecto es viable o no. El VAN también nos permite determinar cuál proyecto es el más rentable entre varias opciones de inversión. Incluso, si alguien nos ofrece comprar nuestro negocio, con este indicador podemos determinar si el precio ofrecido está por encima o por debajo de lo que ganaríamos de no venderlo.

Para el criterio de decisión del VAN se tendrá en cuenta lo estipulado en tabla 5:

Tabla 5Criterio de decisión (VAN)

VAN		
Resultado		Decisión
Positivo	VAN > 0	Se acepta
Cero	VAN=0	Según criterio
Negativo	VAN < 0	Se rechaza

Fuente: Virreita (2020)

Interpretación:

- VAN > 0, la inversión aumenta el valor de la empresa. El proyecto puede ser aceptado.
- VAN < 0, la inversión disminuye el valor de la empresa. El proyecto debería ser rechazado.
- VAN = 0, la inversión no aumenta ni disminuye el valor de la empresa. La decisión de invertir debería basarse en otros criterios

Tasa Interna de Retorno (TIR)

Según Azaña (2018), es la tasa de interés o rentabilidad que ofrece una inversión, que iguala el Valor Actual Neto (VAN) a cero se expresa en porcentaje. La Tasa Interna de Retorno (TIR) nos indica si el proyecto es viable. La valoración de los proyectos de inversión cuando se hace con base en la Tasa Interna de Retorno, tiene como referencia la tasa de descuento.

Según Myers (2011), TIR es una medida de rentabilidad que depende únicamente de dos factores: cantidad de los flujos de efectivo y el tiempo de los mismo. Por otro lado, el costo de oportunidad de capital es un valor que lo establece el mercado de capitales y, por ende, es un valor estándar de rentabilidad que se utiliza para calcular el valor del proyecto

Teniendo en cuenta que el costo de oportunidad de capital es "k", entonces si la:

TIR < k, se debe rechazar el proyecto.

TIR > k, se debe aceptar el proyecto.

Según Pacheco (2020), el criterio del VAN y TIR miden la rentabilidad de una inversión; sin embargo, se sugiere que su empleo se realice de forma complementaria ya que miden aspectos diferentes de la rentabilidad. El VAN muestra un valor absoluto y la TIR la rentabilidad porcentual.

Según Núñez (2016), la tasa interna de retorno (TIR) representa el retorno generado por determinada inversión (muy utilizada como uno de los indicadores clave en estudios de análisis de viabilidad), o sea, representa la tasa de interés con la cual el capital invertido generaría exactamente la misma tasa de rentabilidad final. Por otras palabras, representa una tasa que, cuando se le utiliza como tasa de descuento, hace el VAN igual a cero. al coste de financiamiento, añadida de determinada tasa de riesgo asociada.

Según Delgado (2018) las diferencias y analogías entre la VAN y la TIR:

- a) Ambos utilizan flujos de efectivo netos de impuestos.
- b) Ambos tienen en cuenta el valor tiempo del dinero.
- c) La TIR es una incógnita del proyecto, que emerge de las condiciones propias de éste. En cambio, para el cálculo del VAN se utiliza el costo de oportunidad del inversor que representa un dato que viene dado externamente.
- d) Mientras el VAN es una medida de rentabilidad en términos absolutos, la TIR es una medida de rentabilidad en términos relativos. En este sentido, puede decirse que el VAN es una medida de rentabilidad que traduce el objetivo del directivo financiero, que se entiende como la maximización del valor. e) El VAN supone implícitamente la reinversión de fondos a la tasa de corte, mientras que la TIR supone implícitamente la reinversión de fondos a la misma TIR.

2.3. Definición de términos

- Análisis Costo-Eficiencia:

Se ejecuta para proyectos donde es viable identificar, cuantificar y valorar los costos, y recomienda determinar un número de variables en términos de una unidad de medida no monetaria, a través de la construcción de indicadores que permitan elegir los proveedores más eficientes.

- Análisis Costo-Beneficio:

Permite cuantificar los beneficios sobre el bienestar económico de la sociedad, en términos reales asignándole precios económicos a los diferentes componentes.

- Subrasante:

Capa de terreno de una carretera, que resiste la estructura del pavimento y que se ensancha hasta una hondura en que no le perturbe la carga de diseño que corresponde al tránsito vehicular.

- Sub base:

Capa de la estructura del pavimento diseñada para paralizar la penetración de los materiales que constituyen la base con los de la subrasante.

- Base:

Capa de la estructura del pavimento que cumple la función de proporcionar resistencia frente a los esfuerzos producidos por el tránsito y transmite estos esfuerzos a la capa subbase y al terreno de fundación.

- Superficie de rodadura:

Carpeta que brinda una superficie uniforme y estable para el tránsito, con la textura y el color adecuados.

- Calzada:

Un área de autopista destinada a la circulación vehicular, de suficiente ancho para acomodar un cierto número de carriles para el mismo movimiento, excluyendo el personal lateral.

- CBR:

Es un parámetro que mide la resistencia al corte del suelo en condiciones de densidad y humedad escrupulosamente controlada.

- VAN:

Es diferencia entre el valor presente de los flujos futuros del proyecto y la inversión inicial necesaria para ejecutar el mismo.

- TIR:

Tasa de descuento que hace que el VAN del proyecto valga cero y representa la rentabilidad que el proyecto estaría generando para los inversionistas.

- Serviciabilidad

Habilidad del pavimento de servir al tipo de tráfico que circulan en la vía, se mide en una escala del 0 al 5 en donde 0 (cero) significa una calificación para pavimento intransitable y 5 (cinco) para un pavimento excelente.

2.4. Marco Normativo

- Método de Ensayo Para Determinar El Contenido De Humedad De Un Suelo NTP 339.127- R.D. N° 022-2019-INACAL/DN. Publicada el 2019-10-24
 Esta norma técnica establece los procedimientos para hallar el contenido de humedad expresado en porcentaje de una muestra de suelo.
- Método de Ensayo Para Análisis Granulométrico NTP 339.128. R.D. N° 022-2019-INACAL/DN. Publicada el 2019-10-24

 Esta norma técnica instituye los procedimientos para hallar los distintos tamaños de las partículas que conforman una muestra de suelo.
- Método de Ensayo para determinar el Límite Líquido, Límite Plástico, e Índice De Plasticidad De Suelos- NTP 339.129 R.D. N° 022-2019-INACAL/DN. Publicada el 2019-10-24
 - Esta norma técnica establece los procedimientos para hallar el L.L, L.P e Índice de plasticidad de una muestra de suelo.
- Método De Ensayo Para Determinar El Material que Pasa El Tamiz N° 200 NTP 339.132 R. 56-2014/CNB-INDECOPI. Publicada el 2014-07-30
 Esta norma técnica establece los procedimientos para hallar la cantidad de partículas que pasa por el tamiz N° 200 de una muestra de suelo.
- Método Para La Clasificación De Suelos Con Propósitos De Ingeniería S.U.C.S. NTP 339.134 R.D. N° 022-2019-INACAL/DN. Publicada el 2019-10-24

 Esta norma técnica establece los procedimientos para clasificar una muestra de suelo teniendo en cuenta la funcionalidad para ser usada de acuerdo a la S.U.C.S.
- Determinación del CBR (California Bearing Ratio valor Soporte De California) medido en muestras compactadas en Laboratorio - NTP 339.145- R.D. N° 022-2019-INACAL/DN. Publicada el 2019-10-24

Esta norma técnica establece los procedimientos para determinar el CBR de una muestra de suelo en un laboratorio, esta muestra debe contener humedad y grado de compactación controlada.

- Ensayo de Densidad Relativa ASTM D2049 DOI: 10.1520/D4254- 00RO6E01
 Publicada el 2006-03-01
 - Esta norma técnica establece los procedimientos para hallar la densidad relativa de una muestra de suelo.
- Manual de Carreteras: Diseño Geométrico DG 2018- R.D. N° 028 2014 MTC/14.
 Publicada el 2018-01-01
 - Es un documento normativo que organizar, recopila técnicas y procedimientos para el diseño de infraestructura vial. Incluye la descripción detallada del diseño, la información necesaria para los diferentes procedimientos y la geometría de los proyectos, según su categoría y nivel de servicio.
- Manual de Carreteras: Especificaciones Técnicas Generales para Construcción de Carreteras EG 2013- R.D. N° 022 2013. Publicada el 2014-03-01 Es un documento normativo que estipula las especificaciones técnicas para construir carreteras de calidad y que sean durables durante su vida útil.
- Diseño de estructuras de pavimentos-Metodología AASHTO 93. Publicada el 1993-01-01
 - Es un documento normativo que estipula los parámetros y procedimientos para diseñar la estructura de un pavimento.
- Manual técnico de mantenimiento rutinario para la red vial departamental no pavimentada. Aprobado por la Resolución Directoral N° 015-2006-MTC/14 del 22 de marzo del año 2006.

_

Guía el mantenimiento de carreteras y proporcionar estándares de desempeño tales como instrucciones y especificaciones técnicas, de fácil consulta y aplicación, para la realización de importantes actividades de mantenimiento rutinario.

 Nota técnica para el uso de los precios sociales en la evaluación social de proyectos de inversión. Publicada en marzo del 2021.

Presenta los precios sociales a través de casos hipotéticos para calcular los beneficios y costos sociales del proyecto de inversión en fase de formulación y evaluación en el marco del Sistema Nacional de Programación Multianual y Gestión de Inversiones.

MATERIALES Y

MÉTODOS

Capitulo III: MATERIALES Y MÉTODOS

3.1. Tipo de investigación

De acuerdo a la finalidad: Aplicada

Esta investigación es aplicada al resolver el problema ¿Cuál será la mejor alternativa entre

los pavimentos evaluados estructural y económicamente en el tramo: Panamericana Norte

km 443 hasta Puerto Santa?, aplicando todos los conocimientos y teorías relacionadas al

diseño de pavimento para luego evaluar cual es la alternativa más optima.

3.2. Nivel de investigación

De acuerdo al nivel de investigación: Descriptiva

Esta investigación es descriptiva al describir los parámetros para realizar un adecuado

diseño de la estructura del pavimento mediante la metodología AASHTO 93.

Según Robledo (2014), tanto el enfoque de investigación cuantitativo como cualitativa

tienen sus ventajas y sus desventajas. Por esta razón, en algunos casos, podría darse la

circunstancia de que ninguno de estos dos métodos de investigación ofrezca suficiente

información y, por tanto, no se puedan recoger datos que proporcionen resultados que

respondan a las necesidades. En este tipo de situaciones es posible emplear un enfoque de

investigación mixta.

Esta investigación presenta un enfoque mixto, al recolectar datos cuantitativos y

cualitativos de la superficie del terreno mediante la topografía, capacidad portante del

suelo y el tipo de suelo presente, afluencia y tipo de vehículos; para luego obtener

parámetros de diseño de pavimento según la metodología AASHTO 93 y el manual de

Carreteras "Suelos, Geología, Geotecnia y Pavimentos". Finalizando con una evaluación

económica y financiera en función a los valores VAN y TIR.

UNS NACIONAL DEL SANTA

3.3. Diseño de investigación

Según Huaire (2019), el diseño de investigación no experimental-Transversal recolectan datos en un solo momento, en un tiempo único o momento dado.

Esta investigación presenta un diseño de investigación No experimental-Transversal al indagar la incidencia de las variables Alternativas optimas de pavimentación y Condición estructural y económica en una población.

3.4. Unidad de análisis

La unidad de análisis son las alternativas de pavimentación del tramo: Panamericana Norte km 443 hasta Puerto Santa ubicada en Santa – Ancash.

3.5. Ubicación

Distrito : Santa

Provincia : Santa

Departamento : Ancash

3.6. Población y Muestra

Según Robledo (2004), la población finita es aquella que conoce su tamaño y a veces son tan grandes que se comportan como infinitas. Para la presente investigación, la población es finita y es los distintos tipos de pavimento ubicados en el distrito de Santa, provincia de Santa ubicada en el departamento de Ancash.

Según Robledo (2004), el muestreo no probabilístico elegido por conveniencia se trabaja con las unidades de análisis que se tiene a mano.

La muestra en la presente investigación se compone de las alternativas de pavimentación para la zona de estudio tramo: Panamericana Norte km 443 hasta Puerto Santa ubicada en el distrito de Santa, provincia de Santa del departamento de Ancash. El muestreo en la presenta investigación es no probabilística elegida por conveniencia y criterio del investigador.

3.7. Variables

3.7.1. Variable independiente

- Condición estructural del pavimento
- Condición económica del pavimento.

3.7.2. Variable dependiente

- Alternativa optima de pavimentación.

3.7.3. Matriz de consistencia

TITULO	FORMULACIÓN DEL PROBLEMA	HIPÓTESIS	OBJETIVOS	VAR	IABLES
	Problema General:		Objetivo General:		
	¿Cuál será la mejor alternativa entre los pavimentos evaluados estructuralmente y económicamente en el tramo: Panamericana Norte km 443 hasta Puerto Santa?		Determinar el pavimento óptimo estructuralmente y económicamente para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa.		
	Problemas Específicos:	El tratamiento superficial bicapa +	Objetivos Específicos:		Condición Estructural del Pavimento.
Alternativa optima de	¿Qué parámetros de diseño tendrá el pavimento para la zona de estudio el tramo de la Panamericana	cemento asfaltico es la alternativa óptima de pavimentación en comparación	Obtener los parámetros de diseño de pavimento, mediante el método AASHTO 93 y el manual de	INDEPENDIENTE	
pavimentación para el tramo: panamericana norte km 443 hasta Puerto	Norte km 443 hasta Puerto Santa?	pavimento articulado) con condiciones económicas más	Carreteras "Suelos, Geología, Geotecnia y Pavimentos".	Œ	Condición Económica del Pavimento.
Santa	¿Cuál pavimento (flexible, rígido, articulado y tratamiento superficial) presenta un mejor		Comparar la estructura del pavimento flexible,		
	comportamiento estructural para la zona de estudio el tramo de la Panamericana Norte km 443 hasta Puerto Santa?	rentables a corto y largo plazo de la zona de estudio.	pavimento rígido y pavimento articulado, usando el método del AASHTO 93.		
	¿Qué pavimento (flexible, rígido, articulado y tratamiento superficial) presentaran la mejor variación de la relación tiempo/costo?		Comparar el costo de inversión a corto y largo plazo mediante los métodos del Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR).	DEPENDIENTE	Alternativa optima de pavimentación

3.7.4. Operacionalización de variables

Variable		Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Instrumento	Escala de medición
			Орегасіонаг		Volumen	Fichas de observación	Razón
				Estudio de Transito	Cantidad de días	Fichas de observación	Razón
					Tipo de vehículo	Fichas de observación	Razón
					Granulometría	Fichas de observación	Nominal
					Límites de consistencia	Fichas de observación	Razón
		Consiste en la alternativa óptima	Se diseñará el pavimento	Estudio de suelos	Contenido de Humedad	Fichas de observación	Razón
	Alternativa optima de pavimentación	colocación de capas de materiales en el suelo o nivel superior de la terracería, a la que posteriormente se le aplicará el asfalto, losa, piedra, ladrillos, concreto, concreto hidráulico, por mencionar algunos, que será la superficie de rodamiento. (Gallardo y Pescoran ,2019)	teniendo en cuenta el estudio de tránsito, estudio de suelos,	Estudio Topográfico	Densidad Máxima	Fichas de observación	Razón
Variable Dependiente:					CBR	Fichas de observación	Razón
· r					Longitud	Fichas de observación	Razón
					Área	Fichas de observación	Razón
					Ancho de la sección	Fichas de observación	Razón
					Pendiente	Fichas de observación	Razón
					Curvas de nivel	Fichas de observación	Nominal
				Diseño AASHTO	Pavimento	Normativa	Nominal
					Diseño	Excel	Nominal
				93	Suelo	Fichas de observación	Nominal

Variable Independiente:	Condición económica	Condiciones que se requieren para la aplicación y desempeño de una vía en un determinado periodo. (Gallardo y Pescoran ,2019)	Se evaluará las condiciones económicas por cada alternativa de pavimento, teniendo en cuenta metodología de VAN y TIR, costo de mantenimiento, costo de operación vehicular y costos del pavimento.	Económica	Relación Beneficio-Costo	Excel	Razón	
	Condiciones que debe cumplir el pavimento para ser rentable a largo plazo y a corto plazo. (Gallardo y Pescoran ,2019)				Mantenimiento Periódico	Excel	Razón	
		Condiciones que debe cumplir el			Mantenimiento Rutinario	Excel	Razón	
		pavimento para ser rentable a largo plazo y a corto plazo. (Gallardo y		espesores mínimos		Costos de operación vehicular	Excel	Razón
		vigente.			Capa	Excel	Razón	
				Estructura del pavimento	Base	Excel	Razón	
				pavimento	Subbase	Excel	Razón	

3.8. Técnica e Instrumentos de recolección de datos

La técnica de investigación aplicada en esta investigación es la observación. Los instrumentos utilizados para Estudio de mecánica de suelos son los siguientes:

- -Formato para determinar el contenido de humedad de una muestra de suelo -NTP 339.127.
- -Formato para determinar el análisis granulométrico de una muestra de suelo -NTP 339.128.
- -Formato para determinar el L.L, L.P e I.P de una muestra de suelo-NTP 339.129.
- -Formato de ensayo de compactación del suelo en laboratorio utilizando una energía modificada.
- -Formato para determinar el CBR una muestra de suelo-NTP 339.145.

Para el procesamiento de datos se utilizó el Microsoft Excel.

Los instrumentos utilizados para Estudio topográfico son los siguientes:

Libreta de apuntes y fichas de observación. Para el procesamiento de datos se utilizó el Microsoft Excel y el AutoCAD.

Los instrumentos utilizados para Estudio de tránsito son los siguientes:

Libreta de apuntes y el formato de conteo vehicular estipulado por la MTC para realizar el conteo de vehículos. Para el procesamiento de datos se utilizó el Microsoft Excel.

Para el diseño de la estructura del pavimento se utilizó el Microsoft Excel, ecuaciones y formatos establecidos en la metodología AASHTO 93.

Para la elaboración de la investigación se utilizó el Microsoft Word.

Condiciones que debe cumplir el pavimento para ser rentable a largo plazo y a corto plazo. (Gallardo y Pescoran ,2019)

3.9. Procedimientos

3.9.1. Procedimiento para obtener los parámetros de diseño de pavimento Estudio de Trafico

- Se realizó en etapas (Trabajo de campo y gabinete), en la primera etapa se efectuó el conteo de vehículos y en la segunda etapa se analizó los datos obtenidos para hallar el IMD y ESAL que permitirá diseñar el pavimento para la zona de estudio.
- Para el conteo de vehículos se tomó el tramo: Panamericana Norte km 443 hasta
 Puerto Santa, se realizó durante dos días desde las 07:00 am hasta las 07:00 p.m.
 estación de control se encuentra ubicada en la siguiente figura:

Fuente: Elaboración propia (2022)

Para el conteo de vehículos se utilizó la siguiente ficha de observación en el anexo
 02.

- Para el análisis y diseño de los distintos pavimentos se consideró un periodo de diseño de 20 años.
- Se determino el factor carril y el factor direccional según la tabla 3.
- Se asumió el valor del factor de la presión neumática, para esta investigación se consideró el valor de 1.
- El cálculo del factor vehículo pesado teniendo en cuenta lo estipulado en la figura 2.
- Se calculo el número de repeticiones de ejes equivalentes por cada tipo de vehículo en un día, según la siguiente expresión:

$$EE_{dia-carril} = IMD \ x \ Fd \ x \ Fc \ x \ Fvp \ x \ Fp$$

Ecuación 1. Número repeticiones de ejes equivalentes

Donde:

 $EE_{dia-carril}$: Numero de repeticiones de ejes equivalentes.

IMD: Índice medio diario.

Fd: Factor direccional.

Fc: Factor Carril.

Fvp: Factor de vehículo pesado.

Fp: Factor de presión neumática.

- Se calculo ESAL de diseño mediante la siguiente expresión:

$$ESAL = \sum (EE_{dia-carril}x Fca x 365)$$

Ecuación 2.ESAL de diseño

Donde:

ESAL : Ejes Equivalentes de Carga

 $EE_{dia-carril}$: Numero de repeticiones de ejes equivalentes.

Fca: Factor Carril.

Estudio de mecánica de suelos

- Se realizó un estudio de mecánica de suelos para conocer las características de la subrasante en la zona de estudio. Este estudio fue ejecutado en dos etapas (exploración en campo y ensayos de laboratorio).
- La primera etapa consistió en recolectar muestras de suelos mediante calicatas en la zona de estudio a 1.5 metros de profundidad. Se realizaron 5 calicatas.

Figura 4. Ubicación de calicatas.

- Se realizaron los ensayos respectivos para cada calicata según lo establecido en la tabla 1.
- Para hallar el contenido de humedad se utilizó ficha de observación del anexo 01.
- Para hallar la granulometría de una muestra de suelo se utilizó siguiente ficha de observación del anexo 01.
- Se determino el análisis granulométrico de una muestra de suelo con la siguiente ficha de observación del anexo 01.

_

 Se determino la cantidad del material fino que pasa por la malla Nº200 de una muestra de suelo con la siguiente ecuación:

$$A = \frac{B - C}{B} \times 100$$

Ecuación 3.Cantidad de material fino que pasa por la malla Nº 200

Donde:

A: Cantidad de material fino que pasa por la malla Nº 200

B : Peso de la muestra seca en gramos

C: Peso de la muestra seca después de lavar.

 Según los datos hallados líneas arriba se clasifico las muestras de suelo según la metodología SUCS y AASHTO.

Diseño de pavimento según la metodología AASHTO 93-Pavimento Flexible

- Para realizar el diseño del pavimiento y aplicar las fórmulas según la metodología
 AASHTO 93, se determinó el CBR y el ESAL y parámetros que proporciona el comportamiento de pavimentos durante un periodo.
- Con el valor obtenido del ESAL se clasifica la vía, teniendo en cuenta la tabla 6:

Tabla 6Tipo de tráfico según el ESAL

Tipos de tráfico pesado EE	Rangos de tráfico pesado en EE
Tp5	>1'000,000 EE ≤1'500,00 EE
Тр6	>1'500,000 EE ≤3'000,000 EE
Tp7	>3'000,000 EE ≤5'000,000 EE
Tp8	>5'000,000 EE ≤7'500,000 EE
Тр9	>7'500,000 EE ≤10'000,000 EE
Tp10	>10'000,000 EE ≤12'500,000 EE
Tp11	>12'500,000 EE ≤15'000,000 EE
Tp12	>15'000,000 EE ≤20'000,000 EE
Tp13	≥20°000,000 EE ≥25°000,000 EE
Tp14	≥25°000,000 EE ≥25°000,000 EE ≤30°000,000 EE
Tp15	>30'000,000 EE

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pag.151)

- El módulo de resiliencia se calculó mediante la siguiente expresión:

$$Mr = 2555 \times CBR^{0.64}$$

Ecuación 4. Módulo de resiliencia

Donde:

Mr: Módulo de resiliencia en PSI.

CBR: CBR de una muestra de suelo.

- La confiabilidad se calculó mediante la tabla 7:

Tabla 7Confiablidad -Desviación estándar-Pavimento flexible

Tipos de caminos	Trafico	Ejes equivale	entes acumulados	Desviación estándar normal (Zr)
	Tp0	100,001	150,000	-0.385
a	Tp1	150,001	300,000.00	-0.524
Caminos de	Tp2	300,001	500,000.00	-0.674
bajo volumen de transito	Tp3	500,001	750,000.00	-0.842
de transito	Tp4	750,001	1,000,000.00	-1.036
	Tp5	1,000,001	1,500,000.00	-1.036
	Tp6	1,500,001	3,000,000.00	-1.036
	Tp7	3,000,001	5,000,000.00	-1.282
	Tp8	5,000,001	7,500,000.00	-1.282
	Tp9	7,500,001	10,000,000.00	-1.282
D	Tp10	10,000,001	12,500,000.00	-1.282
Restos caminos	Tp11	12,500,001	15,000,000.00	-1.282
	Tp12	15,000,001	20,000,000.00	-1.645
	Tp13	20,000,001	25,000,000.00	-1.645
	Tp14	25,000,001	30,000,000.00	-1.645
	Tp15	>30	-1.645	

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pag.156)

 La desviación estándar acumulada fue asumida "0.45", teniendo en cuenta el rango de 0.4 -0.5 estipulado en el manual de carreteras.

- El índice de serviciabilidad inicial se determina según la tabla 8:

 Tabla 8

 Índice de serviciabilidad inicial-pavimento flexible

Tipos de caminos	Trafico	Ejes equivalentes acumulados		Índice de Serviciabilidad (Pi)
	Tp0	100,001	150,000	3.80
G	Tp1	150,001	300,000	3.80
Caminos de	Tp2	300,001	500,000	3.80
bajo volumen de transito	Tp3	500,001	750,000	3.80
de transito	Tp4	750,001	1,000,000	4.00
	Tp5	1,000,001	1,500,000	4.00
	Tp6	1,500,001	3,000,000	4.00
	Tp7	3,000,001	5,000,000	4.00
	Tp8	5,000,001	7,500,000	4.00
	Tp9	7,500,001	10,000,000	4.00
Dantananina	Tp10	10,000,001	12,500,000	4.00
Restos caminos	Tp11	12,500,001	15,000,000	4.00
	Tp12	15,000,001	20,000,000	4.20
	Tp13	20,000,001	25,000,000	4.20
	Tp14	25,000,001	30,000,000.00	4.20
	Tp15	>30000000		4.20

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pag.158)

- El índice de serviciabilidad final se determina según la tabla 9:

 Tabla 9

 Índice de serviciabilidad final-pavimento flexible

Tipos de caminos	Trafico	Ejes ec acui	Índice de Serviciabilidad Inicial (Pf)	
Caminos	Tp0	100,001	150,000	2.0
de bajo	Tp1	150,001	300,000.00	2.0
volumen	Tp2	300,001	500,000.00	2.0
de	Tp3	500,001	750,000.00	2.0
transito	Tp4	750,001	1,000,000.00	2.0
	Tp5	1,000,001	1,500,000.00	2.5
	Tp6	1,500,001	3,000,000.00	2.5
	Tp7	3,000,001	5,000,000.00	2.5
	Tp8	5,000,001	7,500,000.00	2.5
_	Tp9	7,500,001	10,000,000.00	2.5
Restos	Tp10	10,000,001	12,500,000.00	2.5
caminos	Tp11	12,500,001	15,000,000.00	2.5
	Tp12	15,000,001	20,000,000.00	3.0
	Tp13	20,000,001	25,000,000.00	3.0
	Tp14	25,000,001	30,000,000.00	3.0
	Tp15	>30000000		3.0

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pag.159)

- La diferencia de serviciabilidad se obtiene mediante la siguiente expresión:

ΔPSI: Si-Sf

Ecuación 5.Diferencia de serviciabilidad

Donde:

ΔPSI: Diferencia de serviciabilidad

Si: Serviciabilidad inicial

Sf: Serviciabilidad final

- Para determinar el Numero estructural (Sn) se utilizado la siguiente expresión:

$$Log \ (W_{18}) = Z_R.S_o + 9.36. \\ Log (SN+1) - 0.20 + \frac{Log \left(\frac{\Delta PSI}{4.2-1.5}\right)}{0.40 + \frac{1094}{(SN-1)^{5.19}}} + 2.32. \\ Log (M_R) - 8.07 + 2.09 \\ Log (M_R) - 8.09 \\ Log (M_R$$

Ecuación 6.Número estructural -AASHTO

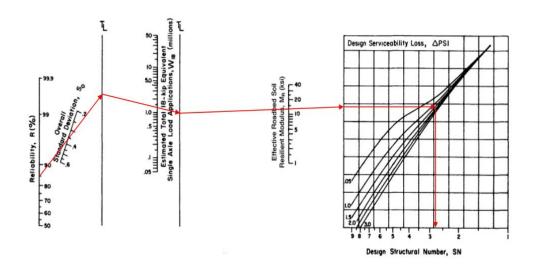
Donde:

W18: Ejes Equivalentes de Carga

CBR (%): CBR de una muestra de suelo

MR: Modulo de resiliencia.

R (%): Nivel de confiabilidad


ZR: Desviación Estándar Normal

So: Desviación Estándar Combinada

ΔPSI: Diferencia de serviciabilidad

- Con los datos obtenidos su ubica en el nomograma dado por AASHTO:

Figura 5.Monograma de AASHTO

Fuente: Guía AASHTO 1993 para el diseño de estructuras de pavimentos (pag.122)

- Para determinar el espesor de las capas estructurales del pavimento se hallar primero los coeficientes estructurales y el coeficiente de drenaje teniendo en cuenta la tabla 10, tabla 12, tabla 13 y tabla 14:

Tabla 10Coeficiente estructural de capa asfáltica – pavimento flexible

Capa Superficial	Coeficie nte	Valor coeficiente estructural a1(cm)	Observación
Carpeta Asfáltica en caliente, modulo 2.965 MPA (430,000 PSI) a 20 C°(68°F)	al	0.17	Capa superficial recomendada para todos los tipos de trafico
Carpeta Asfáltica en frio, mezcla asfáltica con emulsión	al	0.125	Capa superficial recomendada para de tráfico ≤ 1000,000 EE
Micro pavimento 25 mm	a1	0.13	Capa superficial recomendada para de tráfico ≤ 1000,000 EE
Tratamiento superficial bicapa	al	0.25	Capa superficial recomendada para de tráfico ≤ 500,000 EE

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág.162)

Tabla 11Coeficiente estructural de la base – pavimento flexible

Base	Coeficiente	Valor coeficiente estructural a2 (cm)	Observación
Base granular CBR 80% compactada al 100% de la MDS	a2	0.0520	Capa base recomendada para de tráfico ≤ 5 000,000 EE
Base granular CBR 100% compactada al 100% de la MDS	a2	0.0540	Capa base recomendada para de tráfico > 5 000,000 EE
Base granular tratada con asfalto (Estabilidad =1500 lb)	a2a	0.1150	Capa base recomendada para todos los tipos de trafico
Base granular tratada con cemento (Fc: 35 kg/cm2) a los 7 días	a2b	0.0700	Capa base recomendada para todos los tipos de trafico
Base granular tratada con cemento (Fc: 12 kg/cm2) a los 7 días	a2c	0.0800	Capa base recomendada para todos los tipos de trafico

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág.162)

Tabla 12Coeficiente estructural de la sub base – pavimento flexible

Sub base	Coeficiente	Valor del coeficiente estructural a3 (cm)	Observación
Sub base granular CBR 40%, compactada al 100% de la MDS	a3	0.047	Capa sub base recomendada para de tráfico ≤ 15 000,000 EE
Sub base granular CBR 60%, compactada al 100% de la MDS	a3	0.050	Capa sub base recomendada para de tráfico > 15 000,000 EE

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág.162)

Tabla 13Calidad de drenaje en base al tiempo de evacuación del agua – pavimento flexible

Calidad de drenaje	Tiempo en que tarda el agua en ser evacuada
Excelente	2 horas
Bueno	1 día
Mediano	1 semana
Malo	1 mes
Muy malo	el agua no evacua

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág.163)

 Tabla 14

 Determinación de coeficiente de drenaje- pavimento flexible

Calidad de drenaje	o este expuesto a a la saturación			
Carrage at aronage	< 1%	1% - 5 %	5% - 25 %	> 25%
Excelente	1.40-1.35	1.35-1.30	1.30 - 1.20	1.20
Bueno	1.35-1.25	1.25-1.15	1.15 - 1.00	1.00
Regular	1.25-1.15	1.15-1.05	1.00 - 0.80	0.80
Pobre	1.15-1.05	1.05-0.80	0.80 - 0.60	0.60
Muy pobre	1.05-0.95	0.95-0.75	0.75 - 0.40	0.40

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág.163)

- Con los coeficientes elegidos se reemplaza en la siguiente expresión:

$$SN = d1 * a1 + d2 * a2 * m2 + d3 * a3 * m3$$

Ecuación 7. Número estructural - Pavimento flexible

Donde:

- a1, a2, a3 = coeficientes estructurales de las capas: superficial, base y sub base, respectivamente.
- d1, d2, d3 = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente.

m2, m3 = coeficientes de drenaje para las capas de base y subbase, respectivamente.

Diseño de pavimento según la metodología AASHTO 93-Pavimento Rígido

- Asimismo, que con el pavimento flexible se determinaron los parámetros necesarios para el diseño del pavimento (cargas aplicadas, resistencia del suelo, niveles de serviciabilidad y así algunas características que definen el comportamiento del concreto).
- Se calculo el ESAL de diseño(W18), los índices de serviciabilidad se calculó mediante la tabla 15:

Tabla 15Índice de serviciabilidad para pavimentos rígidos

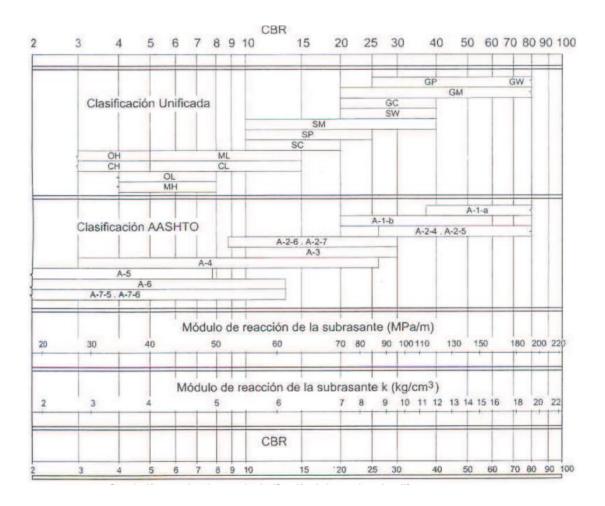
Tipos de caminos	Trafico	Ejes equivalentes acumulados		(Pi)	(Pt)	ΔΡSΙ
	Tp0	100,001	150,000	4.1	2.0	2.1
Caminos de	Tp1	150,001	300,000.00	4.1	2.0	2.1
bajo volumen de	Tp2	300,001	500,000.00	4.1	2.0	2.1
transito	Tp3	500,001	750,000.00	4.1	2.0	2.1
transito	Tp4	750,001	1,000,000.00	4.1	2.0	2.1
	Tp5	1,000,001	1,500,000.00	4.3	2.5	1.8
	Tp6	1,500,001	3,000,000.00	4.3	2.5	1.8
	Tp7	3,000,001	5,000,000.00	4.3	2.5	1.8
	Tp8	5,000,001	7,500,000.00	4.3	2.5	1.8
_	Tp9	7,500,001	10,000,000.00	4.3	2.5	1.8
Restos	Tp10	10,000,001	12,500,000.00	4.3	2.5	1.8
caminos	Tp11	12,500,001	15,000,000.00	4.3	2.5	1.8
	Tp12	15,000,001	20,000,000.00	4.5	3.0	1.5
	Tp13	20,000,001	25,000,000.00	4.5	3.0	1.5
	Tp14	25,000,001	30,000,000.00	4.5	3.0	1.5
	Tp15	>30	0000000	4.5	3.0	1.5

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y

Pavimentos (pág.265)

- La confiabilidad y la desviación estándar normal se calculó mediante la tabla 16:

Tabla 16Confiablidad -Desviación estándar-Pavimento rígido


Tipos de caminos	Trafico	Ejes equivale acumulados	entes	Confiabilidad(R%)	Desviación estándar normal (Zr)
	Tp0	100,000	150,000	65.00%	-0.385
Caminos de	Tp1	150,001	300,000.00	70.00%	-0.524
bajo	Tp2	300,001	500,000.00	75.00%	-0.674
volumen de	Tp3	500,001	750,000.00	80.00%	-0.842
transito	Tp4	750,001	1,000,000.00	80.00%	-0.842
	Tp5	1,000,001	1,500,000.00	85.00%	-1.036
	Tp6	1,500,001	3,000,000.00	85.00%	-1.036
	Tp7	3,000,001	5,000,000.00	85.00%	-1.036
	Tp8	5,000,001	7,500,000.00	90.00%	-1.282
	Tp9	7,500,001	10,000,000.00	90.00%	-1.282
Restos	Tp10	10,000,001	12,500,000.00	90.00%	-1.282
caminos	Tp11	12,500,001	15,000,000.00	90.00%	-1.282
	Tp12	15,000,001	20,000,000.00	90.00%	-1.282
	Tp13	20,000,001	25,000,000.00	90.00%	-1.282
	Tp14	25,000,001	30,000,000.00	90.00%	-1.282
	Tp15	>30000000		95.00%	-1.645

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pag. 266)

Módulo de reacción de la subrasante (Kc) se calculó según el Manual de
 Carreteras, Suelos, Geología, Geotecnia y Pavimentos – Sección Suelos y
 Pavimentos, utilizando la siguiente figura:

Figura 6. Correlación entre el CBR y el Módulo de Reacción de la Subrasante

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y

Pavimentos (pág. 267)

- Resistencia al flexo tracción del concreto (**MR**) se calculó mediante la tabla 17:

Tabla 17Resistencia al flexo tracción del concreto – Pavimento rígido

Rangos de tráfico pesado expresado en EE	Resistencia mínima a el flexo tracción del concreto (MR)	Resistencia mínima equivalente a la compresión del concreto (f'c)
≤ 5 000 000 EE	40 kg/cm2	280 kg/cm2
> 5 000 000 EE \le 5 000 000 EE	42 kg/cm2	300 kg/cm2
> 15 000 000 EE	45 kg/cm2	350 kg/cm2

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág. 269)

- El módulo de elasticidad del concreto se calculó mediante la siguiente expresión:

 $Ec=57000 \times Fc^{0.5}$

Ecuación 8. Modulo de elasticidad del concreto

Donde:

Ec = Modulo de elasticidad del concreto

Fc: Resistencia a la compresión del concreto

- Igualmente que, para el pavimento flexible, se empleó un coeficiente de drenaje igual a 1.00.
- El Coeficiente de transferencia de cargas (J) se determinó mediante la tabla 18:

Tabla 18

Coeficiente de transferencia de cargas (J) – Pavimento rígido

Tipo de berma	Granular o Asfált	ica	Concreto Hidráulico		
Coeficiente de transmisión de	SI (Con pasadores)	No (Con pasadores)	SI (Con pasadores)	No (Con pasadores)	
carga(J)	3.2	3.8-4.4	2.8	3.8	

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimento - Sección Suelos y Pavimentos (pág. 271)

 Para determinar el espesor de la superficie de rodadura se utilizó la siguiente expresión:

$$Log(W_{18}) = Z_R.S_O + 7.35.Log(D + 25.4) - 10.39 + \frac{Log\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D + 25.4)^{8.46}}} + (4.22 - 0.32.P_t).Log\left[\frac{M_R.C_d.[0.09.D^{0.75} - 1.132]}{1.51.J.\left[0.09D^{0.75} - \frac{7.38}{(\frac{E_C}{k})^{0.25}}\right]}\right]$$

Ecuación 9. Espesor de losa -pavimento rígido

Donde:

D: Espesor de la losa

W18: Ejes Equivalentes de Carga

K: Módulo de reacción de la subrasante

MR: Modulo de resiliencia.

R (%): Nivel de confiabilidad

ZR: Desviación Estándar Normal

So: Desviación Estándar Combinada

Pt: Serviciabilidad final

Ec: Modulo de elasticidad

ΔPSI: Diferencia de serviciabilidad

Diseño de pavimento según la metodología AASHTO 93-Pavimento Articulado

- El método AASHTO no tiene fórmulas ni nomogramas de diseño únicos para pavimentos articulados, sin embargo, dado que se comportan de manera similar, se pueden determinar los espesores de sus capas a partir de las fórmulas y nomogramas dados para el desarrollo de pavimentos flexibles.
- Para este tipo de pavimento se debe tener en cuenta lo siguiente:
 - El numero estructural es el espesor que posee los adoquines.
 - Este tipo de pavimento posee una capa de área debajo de los adoquines de 4
 cm, este valor es recomendado por el Manual de Carreteras, Suelos, Geología,
 Geotecnia y Pavimentos.
 - La norma peruana recomienda las siguientes alturas para los adoquines tal como se muestra en la tabla 19:

 Tabla 19

 Espesores recomendados para pavimentos articulados

EE acumulado	os	Capa Superficial	Cama de arena
≤ 150000		Adoquín de concreto: 60 mm	40 mm
150,001.00	7,500,000.00	Adoquín de concreto: 80 mm	40 mm
7,500,001.00	15,000,000.00	Adoquín de concreto: 100 mm	40 mm

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos (pág. 249)

3.9.2. Procedimiento para comparar el costo de inversión a corto y largo plazo mediante los métodos del Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR). (Virreira, 2020)

Metodología VAN y TIR

- Se realizo el conteo vehicular diario por 7 días y por tipo de vehículo.
- Se proyecto la demanda de vehículos actual y proyecto a 20 años.
- Se planteo 4 alternativas de pavimentación:

Alternativa 01: Pavimento Flexible.

Alternativa 02: Pavimento Rígido.

Alternativa 03: Pavimento Articulado.

Alternativa 04: Tratamiento Superficial Bicapa + cemento asfaltico

- Se realizo el presupuesto por cada alternativa de pavimentación y el presupuesto por mantenimiento periódico y rutinario.
- Se calculo los costos incrementales en función al gasto que se destina por mantenimiento en un periodo de 20 años.
- Según el estudio de tráfico se calculó el costo por operación vehicular por cada tipo de vehículo, en función a la tabla 20:

Tabla 20Costo de operación vehicular modular a precios económicos.

Región	Topografía	Superficie	Estado	Auto	Camioneta	Bus med	Bus gran	Cam 2e	Cam 3e	Articulado
Costa	A	AFI	В	0.269	0.285	0.609	0.638	0.854	1.094	1.343
Costa	A	AFI	M	0.431	0.383	0.870	0.829	1.525	1.757	1.939
Costa	A	AFI	R	0.301	0.301	0.659	0.671	1.011	1.243	1.475
Costa	A	ASF	В	0.244	0.269	0.522	0.597	0.655	0.895	1.160
Costa	A	ASF	M	0.301	0.309	0.659	0.688	1.061	1.293	1.508
Costa	A	ASF	R	0.260	0.277	0.572	0.630	0.804	1.044	1.293
Costa	A	SAF	M	0.464	0.407	0.932	0.870	1.633	1.865	2.039
Costa	A	SAF	R	0.374	0.334	0.783	0.746	1.268	1.500	1.716
Costa	A	TRO	M	0.521	0.456	1.032	0.953	1.848	2.080	2.229
Costa	A	TRO	R	0.440	0.383	0.895	0.837	1.533	1.765	1.948
Costa	L	AFI	В	0.269	0.285	0.584	0.630	0.845	1.086	1.326
Costa	L	AFI	M	0.431	0.374	0.870	0.821	1.517	1.740	1.915
Costa	L	AFI	R	0.293	0.301	0.646	0.663	1.003	1.235	1.459
Costa	L	ASF	В	0.236	0.269	0.522	0.597	0.646	0.887	1.152
Costa	L	ASF	M	0.301	0.301	0.659	0.680	1.053	1.285	1.492
Costa	L	ASF	R	0.260	0.277	0.572	0.622	0.796	1.036	1.276
Costa	L	SAF	M	0.456	0.399	0.920	0.862	1.624	1.848	2.014
Costa	L	SAF	R	0.358	0.334	0.746	0.738	1.251	1.484	1.682
Costa	L	TRO	M	0.513	0.448	1.019	0.945	1.832	2.055	2.205
Costa	L	TRO	R	0.431	0.374	0.870	0.821	1.517	1.740	1.915
Costa	О	AFI	В	0.269	0.285	0.597	0.638	0.854	1.086	1.334
Costa	O	AFI	M	0.431	0.383	0.870	0.829	1.517	1.749	1.923
Costa	O	AFI	R	0.293	0.301	0.646	0.671	1.003	1.235	1.467
Costa	O	ASF	В	0.244	0.269	0.522	0.597	0.655	0.887	1.152
Costa	О	ASF	M	0.301	0.301	0.659	0.680	1.053	1.285	1.500
Costa	O	ASF	R	0.260	0.277	0.572	0.630	0.804	1.036	1.285
Costa	О	SAF	M	0.456	0.399	0.920	0.862	1.624	1.857	2.022
Costa	О	SAF	R	0.358	0.334	0.758	0.738	1.260	1.492	1.691
Costa	O	TRO	M	0.513	0.448	1.019	0.953	1.840	2.064	2.213
Costa	О	TRO	R	0.431	0.383	0.870	0.829	1.517	1.749	1.923
Selva	A	AFI	В	0.285	0.407	0.671	0.887	1.169	1.550	1.915
Selva	A	AFI	M	0.456	0.513	0.957	1.119	1.915	2.304	2.553
Selva	A	AFI	R	0.317	0.423	0.721	0.928	1.343	1.724	2.055
Selva	A	ASF	В	0.252	0.383	0.584	0.837	0.937	1.326	1.716
Selva	A	ASF	M	0.326	0.431	0.733	0.945	1.392	1.782	2.105
Selva	A	ASF	R	0.277	0.399	0.634	0.870	1.111	1.492	1.865
Selva	A	SAF	M	0.488	0.537	1.019	1.169	2.031	2.420	2.652
Selva	A	SAF	R	0.391	0.464	0.858	1.019	1.624	2.014	2.304
Selva	A	TRO	M	0.545	0.594	1.119	1.260	2.263	2.660	2.859
Selva	A	TRO	R	0.464	0.513	0.970	1.119	1.915	2.304	2.553
Selva	L	AFI	В	0.277	0.293	0.609	0.663	0.887	1.135	1.392
Selva	L	AFI	M	0.448	0.399	0.908	0.862	1.591	1.832	2.014
Selva	L	AFI	R	0.309	0.309	0.671	0.696	1.044	1.293	1.525
Selva	L	ASF	В	0.252	0.277	0.547	0.622	0.680	0.928	1.202
Selva	L	ASF	M	0.317	0.317	0.684	0.622	1.102	1.343	1.566

Selva											
Selva	Selva	L	ASF	R	0.269	0.293	0.597	0.655	0.837	1.086	1.334
Selva	Selva	L	SAF	M	0.480	0.415	0.957	0.903	1.699	1.939	2.113
Selva I. TRO R 0.448 0.399 0.908 0.862 1.591 1.832 2.014 Selva O AFI B 0.285 0.399 0.659 0.870 1.152 1.525 1.873 Selva O AFI M 0.456 0.505 0.943 1.102 1.800 2.271 2.503 Selva O AFF R 0.309 0.423 0.709 0.912 1.318 1.699 2.022 Selva O ASF B 0.252 0.374 0.572 0.821 0.920 1.301 1.682 Selva O ASF R 0.269 0.393 0.634 0.854 1.094 1.467 1.823 Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO R 0.345 0.556 0.749 1.257 2.048	Selva	L	SAF	R	0.374	0.350	0.783	0.771	1.318	1.558	1.765
Selva O AFI B 0.285 0.399 0.659 0.870 1.152 1.525 1.873 Selva O AFI M 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Selva O AFI R 0.309 0.423 0.709 0.912 1.318 1.699 2.022 Selva O ASF B 0.252 0.374 0.572 0.821 0.920 1.301 1.682 Selva O ASF M 0.317 0.423 0.721 0.928 1.376 1.749 2.064 Selva O ASF R 0.269 0.991 0.634 0.194 1.467 1.823 Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO R 0.456 0.578 1.106 1.243 2.238 2.619	Selva	L	TRO	M	0.537	0.472	1.069	0.995	1.923	2.163	2.312
Selva O AFI M 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Selva O AFI R 0.309 0.423 0.709 0.912 1.318 1.699 2.022 Selva O ASF B 0.252 0.374 0.572 0.821 0.920 1.301 1.628 Selva O ASF M 0.387 0.423 0.721 0.928 1.376 1.749 2.064 Selva O ASF R 0.269 0.391 0.634 0.854 1.094 1.467 1.823 Selva O SAF R 0.269 0.391 0.634 0.854 1.094 1.467 1.823 Selva O TRO M 0.545 0.555 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557	Selva	L	TRO	R	0.448	0.399	0.908	0.862	1.591	1.832	2.014
Selva O AFI R 0.309 0.423 0.709 0.912 1.318 1.699 2.022 Selva O ASF B 0.252 0.374 0.572 0.821 0.920 1.301 1.682 Selva O ASF M 0.317 0.423 0.721 0.928 1.376 1.749 2.064 Selva O ASF M 0.369 0.391 0.6634 0.854 1.094 1.4467 1.823 Selva O SAF M 0.480 0.529 0.995 1.144 2.006 2.387 2.602 Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO R 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557	Selva	O	AFI	В	0.285	0.399	0.659	0.870	1.152	1.525	1.873
Selva O ASF B 0.252 0.374 0.572 0.821 0.920 1.301 1.682 Selva O ASF M 0.317 0.423 0.721 0.928 1.376 1.749 2.064 Selva O ASF R 0.269 0.391 0.634 0.854 1.094 1.467 1.823 Selva O SAF M 0.480 0.529 0.995 1.144 2.006 2.387 2.602 Selva O TRO M 0.545 0.578 1.106 1.243 2.238 2.619 2.801 Selva O TRO M 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.346 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI M 0.491 0.679 1.049 1.490 2.939	Selva	O	AFI	M	0.456	0.505	0.945	1.102	1.890	2.271	2.503
Selva O ASF M 0.317 0.423 0.721 0.928 1.376 1.749 2.064 Selva O ASF R 0.269 0.391 0.634 0.854 1.094 1.467 1.823 Selva O SAF M 0.480 0.529 0.995 1.144 2.006 2.387 2.602 Selva O TRO M 0.545 0.578 1.106 1.243 2.238 2.619 2.801 Selva O TRO R 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI M 0.491 0.679 1.491 1.490 2.995 3.313 Sierra A ASF B 0.286 0.532 0.581 0.799 1.257 1.748	Selva	O	AFI	R	0.309	0.423	0.709	0.912	1.318	1.699	2.022
Selva O ASF R 0.269 0.391 0.634 0.854 1.094 1.467 1.823 Selva O SAF M 0.480 0.529 0.995 1.144 2.006 2.387 2.602 Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO M 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI M 0.491 0.679 1.049 1.490 2.398 2.905 3.313 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.581 0.712 1.190 1.490	Selva	O	ASF	В	0.252	0.374	0.572	0.821	0.920	1.301	1.682
Selva O SAF M 0.480 0.529 0.995 1.144 2.006 2.387 2.602 Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO M 0.545 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.555 0.749 1.207 1.557 2.048 2.539 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI R 0.352 0.581 0.799 1.257 1.748 2.239 2.714 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490	Selva	O	ASF	M	0.317	0.423	0.721	0.928	1.376	1.749	2.064
Selva O SAF R 0.383 0.456 0.821 0.995 1.608 1.981 2.254 Selva O TRO M 0.545 0.578 1.106 1.243 2.238 2.619 2.801 Selva O TRO R 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.488 2.539 Sierra A AFI M 0.491 0.679 1.049 1.490 2.398 2.905 3.313 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF R 0.352 0.589 0.812 1.282 1.807	Selva	O	ASF	R	0.269	0.391	0.634	0.854	1.094	1.467	1.823
Selva O TRO M 0.545 0.578 1.106 1.243 2.238 2.619 2.801 Selva O TRO R 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI M 0.491 0.669 1.049 1.490 2.398 2.905 3.313 Sierra A AFI R 0.352 0.581 0.799 1.241 1.307 1.798 2.306 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.323 0.548 0.712 1.190 1.460 <td>Selva</td> <td>O</td> <td>SAF</td> <td>M</td> <td>0.480</td> <td>0.529</td> <td>0.995</td> <td>1.144</td> <td>2.006</td> <td>2.387</td> <td>2.602</td>	Selva	O	SAF	M	0.480	0.529	0.995	1.144	2.006	2.387	2.602
Selva O TRO R 0.456 0.505 0.945 1.102 1.890 2.271 2.503 Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI M 0.491 0.679 1.049 1.490 2.398 2.905 3.313 Sierra A AFI R 0.352 0.581 0.799 1.257 1.748 2.239 2.714 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.190 1.490 1.990 2.481 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF R 0.303 0.503 0.912 1.161 1.490 <td>Selva</td> <td>O</td> <td>SAF</td> <td>R</td> <td>0.383</td> <td>0.456</td> <td>0.821</td> <td>0.995</td> <td>1.608</td> <td>1.981</td> <td>2.254</td>	Selva	O	SAF	R	0.383	0.456	0.821	0.995	1.608	1.981	2.254
Sierra A AFI B 0.319 0.556 0.749 1.207 1.557 2.048 2.539 Sierra A AFI M 0.491 0.679 1.049 1.490 2.398 2.905 3.313 Sierra A AFI R 0.352 0.581 0.799 1.257 1.748 2.239 2.714 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 3.313 3.705 Sierra A TRO M 0.451 0.669 1.224 1.665 2.797 </td <td>Selva</td> <td>O</td> <td>TRO</td> <td>M</td> <td>0.545</td> <td>0.578</td> <td>1.106</td> <td>1.243</td> <td>2.238</td> <td>2.619</td> <td>2.801</td>	Selva	O	TRO	M	0.545	0.578	1.106	1.243	2.238	2.619	2.801
Sierra A AFI M 0.491 0.679 1.049 1.490 2.398 2.905 3.313 Sierra A AFI R 0.352 0.581 0.799 1.257 1.748 2.239 2.714 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.039 3.447 Sierra A TRO M 0.581 0.769 1.224 1.665 2.073 2.572 3.014 Sierra L AFI B 0.491 0.687 1.061 1.490 2.398 </td <td>Selva</td> <td>O</td> <td>TRO</td> <td>R</td> <td>0.456</td> <td>0.505</td> <td>0.945</td> <td>1.102</td> <td>1.890</td> <td>2.271</td> <td>2.503</td>	Selva	O	TRO	R	0.456	0.505	0.945	1.102	1.890	2.271	2.503
Sierra A AFI R 0.352 0.581 0.799 1.257 1.748 2.239 2.714 Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.039 3.447 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra L AFI B 0.491 0.687 1.061 1.490 2.935 </td <td>Sierra</td> <td>A</td> <td>AFI</td> <td>В</td> <td>0.319</td> <td>0.556</td> <td>0.749</td> <td>1.207</td> <td>1.557</td> <td>2.048</td> <td>2.539</td>	Sierra	A	AFI	В	0.319	0.556	0.749	1.207	1.557	2.048	2.539
Sierra A ASF B 0.286 0.532 0.649 1.141 1.307 1.798 2.306 Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.099 3.447 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra L AFI B 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 </td <td>Sierra</td> <td>A</td> <td>AFI</td> <td>M</td> <td>0.491</td> <td>0.679</td> <td>1.049</td> <td>1.490</td> <td>2.398</td> <td>2.905</td> <td>3.313</td>	Sierra	A	AFI	M	0.491	0.679	1.049	1.490	2.398	2.905	3.313
Sierra A ASF M 0.352 0.589 0.812 1.282 1.807 2.306 2.764 Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.039 3.447 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI R 0.319 0.327 0.699 0.973 1.697 </td <td>Sierra</td> <td>A</td> <td>AFI</td> <td>R</td> <td>0.352</td> <td>0.581</td> <td>0.799</td> <td>1.257</td> <td>1.748</td> <td>2.239</td> <td>2.714</td>	Sierra	A	AFI	R	0.352	0.581	0.799	1.257	1.748	2.239	2.714
Sierra A ASF R 0.303 0.548 0.712 1.190 1.490 1.990 2.481 Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.039 3.447 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 </td <td>Sierra</td> <td>A</td> <td>ASF</td> <td>В</td> <td>0.286</td> <td>0.532</td> <td>0.649</td> <td>1.141</td> <td>1.307</td> <td>1.798</td> <td>2.306</td>	Sierra	A	ASF	В	0.286	0.532	0.649	1.141	1.307	1.798	2.306
Sierra A SAF M 0.523 0.711 1.124 1.548 2.531 3.039 3.447 Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 </td <td>Sierra</td> <td>A</td> <td>ASF</td> <td>M</td> <td>0.352</td> <td>0.589</td> <td>0.812</td> <td>1.282</td> <td>1.807</td> <td>2.306</td> <td>2.764</td>	Sierra	A	ASF	M	0.352	0.589	0.812	1.282	1.807	2.306	2.764
Sierra A SAF R 0.425 0.630 0.949 1.365 2.073 2.572 3.014 Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L ASFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874<	Sierra	A	ASF	R	0.303	0.548	0.712	1.190	1.490	1.990	2.481
Sierra A TRO M 0.581 0.769 1.224 1.665 2.797 3.313 3.705 Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.330 0.612 0.683 0.874 </td <td>Sierra</td> <td>A</td> <td>SAF</td> <td>M</td> <td>0.523</td> <td>0.711</td> <td>1.124</td> <td>1.548</td> <td>2.531</td> <td>3.039</td> <td>3.447</td>	Sierra	A	SAF	M	0.523	0.711	1.124	1.548	2.531	3.039	3.447
Sierra A TRO R 0.491 0.687 1.061 1.490 2.398 2.905 3.322 Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF R 0.327 0.342 1.011 0.949 1.790 </td <td>Sierra</td> <td>A</td> <td>SAF</td> <td>R</td> <td>0.425</td> <td>0.630</td> <td>0.949</td> <td>1.365</td> <td>2.073</td> <td>2.572</td> <td>3.014</td>	Sierra	A	SAF	R	0.425	0.630	0.949	1.365	2.073	2.572	3.014
Sierra L AFI B 0.294 0.303 0.637 0.691 0.932 1.190 1.465 Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.322 0.360 0.824 0.808 1.382 </td <td>Sierra</td> <td>A</td> <td>TRO</td> <td>M</td> <td>0.581</td> <td>0.769</td> <td>1.224</td> <td>1.665</td> <td>2.797</td> <td>3.313</td> <td>3.705</td>	Sierra	A	TRO	M	0.581	0.769	1.224	1.665	2.797	3.313	3.705
Sierra L AFI M 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 </td <td>Sierra</td> <td>A</td> <td>TRO</td> <td>R</td> <td>0.491</td> <td>0.687</td> <td>1.061</td> <td>1.490</td> <td>2.398</td> <td>2.905</td> <td>3.322</td>	Sierra	A	TRO	R	0.491	0.687	1.061	1.490	2.398	2.905	3.322
Sierra L AFI R 0.319 0.327 0.699 0.733 1.099 1.357 1.607 Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF R 0.327 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.322 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 </td <td>Sierra</td> <td>L</td> <td>AFI</td> <td>В</td> <td>0.294</td> <td>0.303</td> <td>0.637</td> <td>0.691</td> <td>0.932</td> <td>1.190</td> <td>1.465</td>	Sierra	L	AFI	В	0.294	0.303	0.637	0.691	0.932	1.190	1.465
Sierra L ASF B 0.262 0.286 0.562 0.649 0.708 0.974 1.265 Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 </td <td>Sierra</td> <td>L</td> <td>AFI</td> <td>M</td> <td>0.474</td> <td>0.417</td> <td>0.949</td> <td>0.907</td> <td>1.673</td> <td>1.923</td> <td>2.115</td>	Sierra	L	AFI	M	0.474	0.417	0.949	0.907	1.673	1.923	2.115
Sierra L ASF M 0.327 0.327 0.712 0.741 1.157 1.415 1.648 Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 </td <td>Sierra</td> <td>L</td> <td>AFI</td> <td>R</td> <td>0.319</td> <td>0.327</td> <td>0.699</td> <td>0.733</td> <td>1.099</td> <td>1.357</td> <td>1.607</td>	Sierra	L	AFI	R	0.319	0.327	0.699	0.733	1.099	1.357	1.607
Sierra L ASF R 0.278 0.303 0.612 0.683 0.874 1.141 1.407 Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 </td <td>Sierra</td> <td>L</td> <td>ASF</td> <td>В</td> <td>0.262</td> <td>0.286</td> <td>0.562</td> <td>0.649</td> <td>0.708</td> <td>0.974</td> <td>1.265</td>	Sierra	L	ASF	В	0.262	0.286	0.562	0.649	0.708	0.974	1.265
Sierra L SAF M 0.507 0.442 1.011 0.949 1.790 2.040 2.223 Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 </td <td>Sierra</td> <td>L</td> <td>ASF</td> <td>M</td> <td>0.327</td> <td>0.327</td> <td>0.712</td> <td>0.741</td> <td>1.157</td> <td>1.415</td> <td>1.648</td>	Sierra	L	ASF	M	0.327	0.327	0.712	0.741	1.157	1.415	1.648
Sierra L SAF R 0.392 0.360 0.824 0.808 1.382 1.640 1.856 Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 </td <td>Sierra</td> <td>L</td> <td>ASF</td> <td>R</td> <td>0.278</td> <td>0.303</td> <td>0.612</td> <td>0.683</td> <td>0.874</td> <td>1.141</td> <td>1.407</td>	Sierra	L	ASF	R	0.278	0.303	0.612	0.683	0.874	1.141	1.407
Sierra L TRO M 0.564 0.491 1.124 1.041 2.023 2.273 2.431 Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 </td <td>Sierra</td> <td>L</td> <td>SAF</td> <td>M</td> <td>0.507</td> <td>0.442</td> <td>1.011</td> <td>0.949</td> <td>1.790</td> <td>2.040</td> <td>2.223</td>	Sierra	L	SAF	M	0.507	0.442	1.011	0.949	1.790	2.040	2.223
Sierra L TRO R 0.474 0.417 0.949 0.907 1.673 1.923 2.115 Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 </td <td>Sierra</td> <td>L</td> <td>SAF</td> <td>R</td> <td>0.392</td> <td>0.360</td> <td>0.824</td> <td>0.808</td> <td>1.382</td> <td>1.640</td> <td>1.856</td>	Sierra	L	SAF	R	0.392	0.360	0.824	0.808	1.382	1.640	1.856
Sierra O AFI B 0.294 0.425 0.687 0.916 1.215 1.607 1.973 Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 </td <td>Sierra</td> <td>L</td> <td>TRO</td> <td>M</td> <td>0.564</td> <td>0.491</td> <td>1.124</td> <td>1.041</td> <td>2.023</td> <td>2.273</td> <td>2.431</td>	Sierra	L	TRO	M	0.564	0.491	1.124	1.041	2.023	2.273	2.431
Sierra O AFI M 0.474 0.532 0.999 1.157 1.990 2.389 2.631 Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 </td <td>Sierra</td> <td>L</td> <td>TRO</td> <td>R</td> <td>0.474</td> <td>0.417</td> <td>0.949</td> <td>0.907</td> <td>1.673</td> <td>1.923</td> <td>2.115</td>	Sierra	L	TRO	R	0.474	0.417	0.949	0.907	1.673	1.923	2.115
Sierra O AFI R 0.327 0.442 0.749 0.966 1.390 1.782 2.123 Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	AFI	В	0.294	0.425	0.687	0.916	1.215	1.607	1.973
Sierra O ASF B 0.262 0.392 0.599 0.866 0.974 1.365 1.773 Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	AFI	M	0.474	0.532	0.999	1.157	1.990	2.389	2.631
Sierra O ASF M 0.335 0.450 0.762 0.974 1.449 1.840 2.173 Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	AFI	R	0.327	0.442	0.749	0.966	1.390	1.782	2.123
Sierra O ASF R 0.286 0.409 0.649 0.899 1.149 1.548 1.923 Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	ASF	В	0.262	0.392	0.599	0.866	0.974	1.365	1.773
Sierra O SAF M 0.507 0.556 1.049 1.207 2.106 2.506 2.739 Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	ASF	M	0.335	0.450	0.762	0.974	1.449	1.840	2.173
Sierra O SAF R 0.401 0.482 0.862 1.049 1.690 2.081 2.373 Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	ASF	R	0.286	0.409	0.649	0.899	1.149	1.548	1.923
Sierra O TRO M 0.572 0.613 1.161 1.307 2.356 2.756 2.947	Sierra	O	SAF	M	0.507	0.556	1.049	1.207	2.106	2.506	2.739
	Sierra	O	SAF	R	0.401	0.482	0.862	1.049	1.690	2.081	2.373
Sierra O TRO R 0.474 0.532 0.999 1.157 1.990 2.389 2.631	Sierra	O	TRO	M	0.572	0.613	1.161	1.307	2.356	2.756	2.947
	Sierra	O	TRO	R	0.474	0.532	0.999	1.157	1.990	2.389	2.631

Fuente: Recuperada del Anexo SNIP 10, Directiva General del Sistema Nacional de Inversión Pública. Ministerio de Economía y Finanzas (2011)

- El costo de operación vehicular se caculo mediante la siguiente expresión:

Cov=F x C x K x D x 365

Ecuación 10. Costo de operación vehicular

Donde:

Cov: Costo de operación vehicular

F: Factor según la tabla 20

C: Cantidad de vehículos

K: Longitud de la vía

D: Tipo de Cambio del dólar a soles

- El costo de operación vehicular se caculo para el camino vecinal sin proyecto y con proyecto (4 alternativas de pavimentación).

 Se cálculos los beneficios incrementales por cada alternativa de pavimentación con la siguiente expresión:

Bi=Covs-Covct+(0.5 x Covctp)

Ecuación 11. Beneficio incremental

Donde:

Bi: Beneficio incremental

Covs: Costo de operación vehicular sin proyecto.

Covet: Costo de operación vehicular con proyecto con tráfico normal.

Covetp: Costo de operación vehicular con proyecto con tráfico proyectado

 Se cálculo el beneficio por plusvalía de la superficie de Puerto Santa con la siguiente expresión:

$$Pl=S \times C$$

Ecuación 12. Plusvalía

Donde:

Pl: Plusvalía

S: Superficie en m2

C: Costo por m2

 Se cálculo el valor actual neto por cada alternativa de pavimentación mediante la siguiente expresión:

$$VAN = \frac{F1}{(1+i)} + \frac{F2}{(1+i)} \cdot \dots \cdot \frac{Fn}{(1+i)}$$

Ecuación 13. Valor neto actual

Donde:

VAN: Valor neto actual

F: Flujo por cada año

i: Tasa de interés

 Se cálculo la tasa interna de retorno por cada alternativa de pavimentación mediante la siguiente expresión:

$$0 = \frac{F1}{(1+i)} + \frac{F2}{(1+i)} \cdot \dots \cdot \frac{Fn}{(1+i)}$$

Ecuación 14. Valor neto actual

Donde:

F: Flujo por cada año

TIR: Tasa interna de retorno

CAPÍTULO IV

RESULTADOS

Capitulo IV: RESULTADOS

4.1 Análisis e interpretación de resultados

4.1.1 Alternativa optima de pavimentación

-Estudio de mecánica de suelos

Tabla 21Resultado del Estudio de mecánica de suelos

N TO	C 11. 4	M	D C 1111	Clasific	ación	Procto	r	CBR	CBR	I.D.
Nº	Calicata	Muestra	Profundidad	SUCS AASHTO M		MDS	%W		Promedio	I.P
1	C-1	Subrasante	1.5	SP-SM	A-3 (0)	2.070	9.50	10.9		NP
2	C-2	Subrasante	1.5	SP	A-3 (0)	2.135	10.00	9.8	10.05	NP
3	C-3	Subrasante	1.5	SP-SM	A-2-4 (0)	2.125	10.40	9.3	10.03	NP
4	C-4	Subrasante	1.5	SM	A-2-4 (0)	2.025	11.00	10.2		2
5	C-5	Subrasante	1.5	SP	A-3 (0))	2.030	11.30	10.05		NP

Nota: Se realizaron 5 calicatas a una profundidad de 1.5 m obteniendo un CBR de 10.05.

-Estudio de trafico

Tabla 22Conteo vehicular y cálculo del IMD

N°	Tipo de Vehículo	IMD	C1	C2	C3	C4	C5	C6	C7
1	Motokar/Moto/Moto carga	29	30	30	28	33	27	29	23
2	Automóvil	26	29	26	24	25	25	26	29
3	Station Wagon	27	27	22	25	21	25	32	34
4	Camioneta Pick Up	24	22	25	25	25	26	22	22
5	Combi	7	12	6	5	6	6	5	6
6	Camión (2E)	5	6	7	5	4	4	5	6
7	Camión (3E)	5	6	5	4	3	4	5	6
8	Semi tráiler ≥3s3	2	2	2	2	2	2	3	3
9	Tráiler > 3E	2	2	2	2	1	1	1	2

Nota: En la columna "IMD" se encuentra el Número promedio de vehículos medido en un período de 24 horas.

Tabla 23 *ESAL para pavimento flexible y articulado.*

N°	Tipo de Vehículo	EE día- carril	Días	Fca	ESAL
1	Motokar/Moto/Moto				
1	carga	0.00114	365	24.30	10.135
2	Automóvil	0.00421	365	24.30	37.299
3	Station Wagon	0.00425	365	24.30	37.704
4	Camioneta Pick Up	0.04771	365	24.30	423.156
5	Combi	0.11040	365	24.30	979.087
6	Camión (2E)	7.35137	365	24.30	65195.931
7	Camión (3E)	4.76331	365	24.30	42243.643
8	Semi tráiler ≥3s3	3.43589	365	24.30	30471.290
9	Tráiler > 3E	2.36217	365	24.30	20949.012
Total					160,347.257

Nota: En la columna "ESAL" se encuentra el valor que representa el volumen de tránsito de la vía para el pavimento flexible y articulado.

Tabla 24ESAL para pavimento rígido

NIO	Tipo de	EE día-	Días	Г	ECAL
N°	Vehículo	carril	Días	Fca	ESAL
1	Motokar/Moto/Moto				
1	carga	0.00114	365	24.30	10.135
2	Automóvil	0.00210	365	24.30	18.649
3	Station Wagon	0.00213	365	24.30	18.852
4	Camioneta Pick Up	0.04771	365	24.30	423.156
5	Combi	0.09989	365	24.30	885.840
6	Camión (2E)	7.46131	365	24.30	66170.964
7	Camión (3E)	6.42463	365	24.30	56977.075
8	Semi tráiler ≥3s3	5.84320	365	24.30	51820.653
9	Tráiler > 3E	4.01720	365	24.30	35626.699
Total					211,952.024

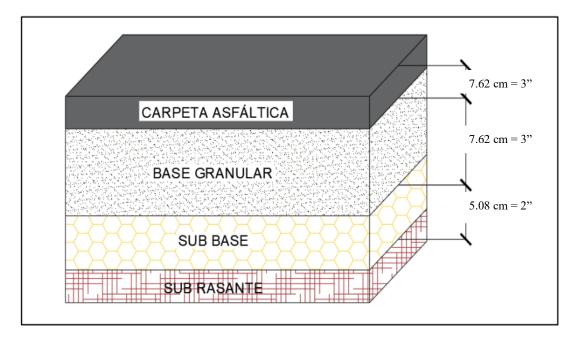
Nota: En la columna "ESAL" se encuentra el valor que representa el volumen de tránsito de la vía para el pavimento rígido.

-Diseño del pavimento flexible

Tabla 25Parámetros para el diseño del para pavimento flexible

Datos de diseño para pavimento flexible	
Periodo=	20 años
W18=	160,347.26
Mr(psi)	11.15
(%R) =	70.00%
(Zr) =	-0.524
(So) =	0.45
Si=	3.8
Pt=	2
$(\Delta PSI) =$	1.8

Nota: Mediante estos datos se realizaron el diseño del pavimento flexible para un periodo de 20 años.


Tabla 26Alternativa de espesores - Pavimento flexible

ALTERNATIVA	CA	Bg	Sbg	SNreq	SNresul
	D1(cm)	D2(cm)	D3(cm)		
1	7.62	7.62	5.08	1.92	1.93
2	5.08	12.7	10.2	1.92	2.00

Nota: Se obtuvieron dos valores de Números estructurales "SN", el valor en la columna "D1" es el espesor de la carpeta asfáltica, el valor de columna "D2" es el espesor de la base y el valor de la columna "D3" es el espesor de la subbase.

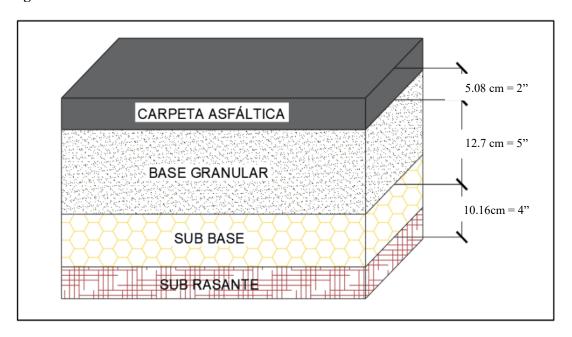


Figura 7 Alternativa 01- Pavimento Flexible

Nota: Se obtuvo 3" como espesor de la carpeta asfáltica, 3" como espesor de la base y 2" como espesor de la subbase.

Figura 8. Alternativa 02- Pavimento Flexible

Nota: Se obtuvo 2" como espesor de la carpeta asfáltica, 5" como espesor de la base y 4" como espesor de la subbase.

-Diseño del pavimento Rígido

Tabla 27Parámetros para el diseño del para pavimento rígido

Datos de diseño para pavimento		
flexible		
Periodo=	20 años	
W18=	211,952.024	
(%R)=	70.00%	
(Zr) =	-0.524	
(So) =	0.35	
Pi=	4.1	
Pt=	2	
$(\Delta PSI)=$	2.1	
Kc=	202.63366 PSI	
Mr=	568.944 PSI	
Ec=	3597150.3 PSI	
Cd=	1	
_J=	2.8	

Nota: Mediante estos datos se realizaron el diseño del pavimento rígido para un periodo de 20 años.

LOSA DE CONCRETO fc=280 kg/cm2

BASE GRANULAR

SUB RASANTE

Figura 9. Alternativa 01 - Pavimento Rígido

Nota: Se obtuvo $10~\mathrm{cm}$ como espesor de la losa de concreto y $15~\mathrm{cm}$ como espesor de la base.

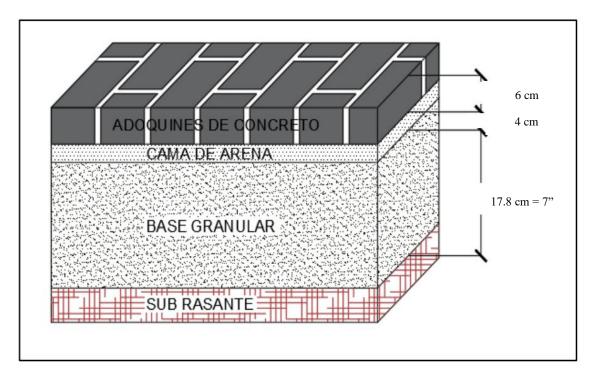
-Diseño del pavimento Articulado

 Tabla 28

 Parámetros para el diseño del para pavimento articulado

Datos de diseño para pavimento	
articulado	
Periodo=	20 años
1 choud-	20 41103
W18=	160,347.26
Mr(psi)	11.15
νι (μοι)	11.13
(%R)=	70.00%
(Zr) =	-0.524
(
(So) =	0.45
Si=	3.8
	3.0
Pt=	2
$(\Delta PSI) =$	1.8

Nota: Mediante estos datos se realizaron el diseño del pavimento articulado para un periodo de 20 años


Tabla 29Alternativa de espesores - Pavimento articulado

ALTERNATIVA	CA	Bg	Sbg	SNreq	SNresul
	D1(cm)	D2(cm)	D3(cm)		
1	6	17.8	0	1.92	1.94
2	8	12.7	0	1.92	2.02

Nota: Se obtuvieron dos valores de Números estructurales "SN", el valor en la columna "D1" es el espesor de los adoquines de concreto, el valor de columna "D2" es el espesor de la base y el valor de la columna "D3" es el espesor de la subbase.

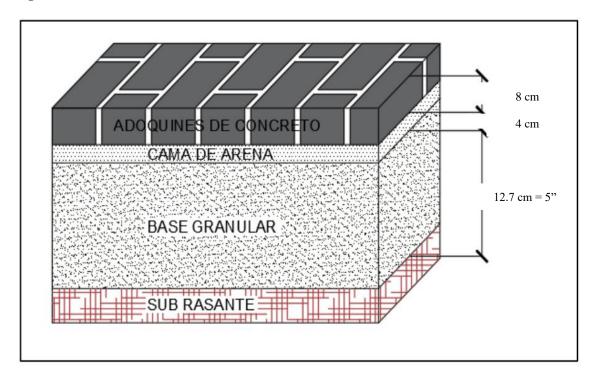
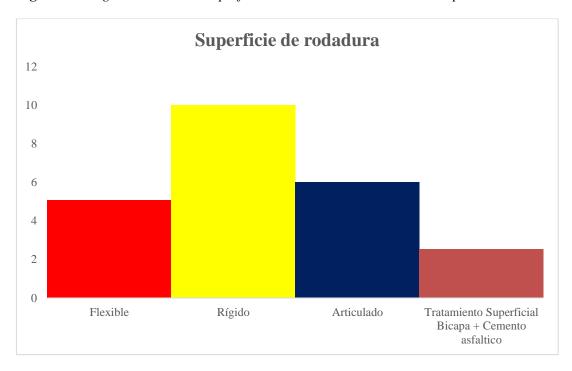


Figura 10. Alternativa 01 - Pavimento articulado

Nota: Se obtuvo 6 cm como espesor los adoquines de concreto y 17.8 cm como espesor de la base.

Figura 11. Alternativa 02 - Articulado



Nota: Se obtuvo 8 cm como espesor los adoquines de concreto y 12.5 cm como espesor de la base.

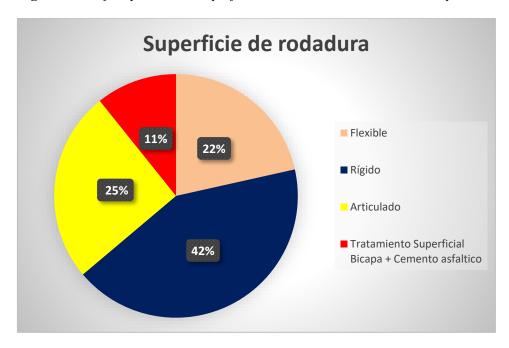
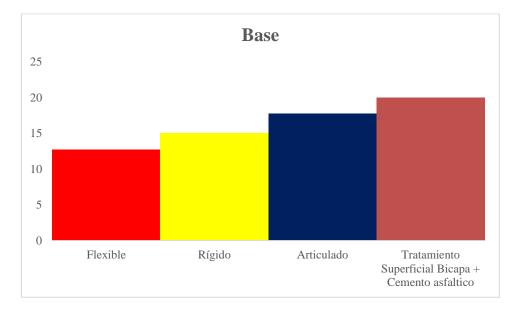

4.1.2 Condición estructural

Figura 12.Diagrama de barras-superficie de rodadura de alternativas de pavimentación

Nota: Se obtuvo mayor espesor de la superficie de rodadura en el pavimento rígido.


Figura 13. Grafico porcentual-superficie de rodadura de alternativas de pavimentación

Nota: Se obtuvo mayor espesor de la superficie de rodadura en el pavimento rígido, un 47% la superficie de rodadura para el pavimiento rígido y 29% la superficie de rodadura para el pavimento articulado.

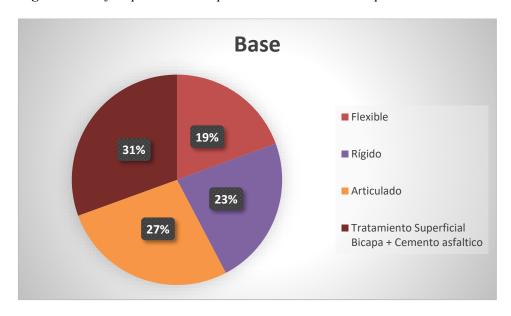


Figura 14.Diagrama de barras-Capa Base de alternativas de pavimentación

Nota: Se obtuvo mayor espesor de la capa base en el pavimento articulado y un menor espesor de capa base para el pavimento flexible.

Figura 15. Grafico porcentual-Capa base de alternativas de pavimentación

Nota: Se obtuvo mayor espesor de la capa base en el pavimento articulado, un 39% la superficie de rodadura para el pavimiento rígido y 28% la superficie de rodadura para el pavimento flexible.

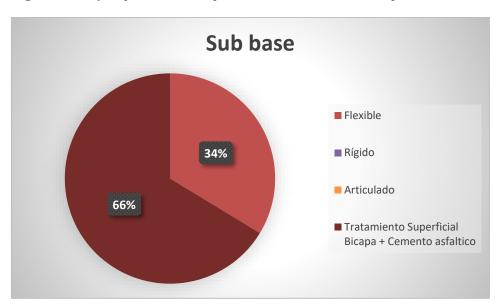


Figura 16.Diagrama de barras-Capa subbase de alternativas de pavimentación

Nota: Solamente el pavimento flexible posee capa Sub base.

Figura 17. Grafico porcentual- Capa subbase de alternativas de pavimentación

Nota: Solamente el pavimento flexible posee capa Sub base.

4.1.3 Condición económica

En la tabla 30 se observa que la alternativa 03 "Pavimento Articulado" presenta mayor presupuesto de obra, costo de mantenimiento rutinario y mantenimiento periódico.

Tabla 30Presupuesto de alternativas de pavimentación

			Alternativas	
Concepto	Alternativa 1	Alternativa 2	Alternativa 3 Pavimento	Alternativa 4 Tratamiento
	Pavimento Flexible	Pavimento Rígido	Articulado	superficial
Obras Provisionales	18,080.00	18,080.00	18,080.00	18,080.00
Trabajos preliminares	6,544.53	6,544.53	6,544.53	6,544.53
Movimientos de tierras	266,560.21	133,280.11	133,280.11	133,280.11
Afirmados	1,356,563.61	1,361,895.01	1,997,446.02	2,222,845.01
Eliminación de material excedente	51,259.82	51,259.82	51,259.82	51,259.82
Pavimento	1,859,894.59	2,243,124.64	1,613,169.36	1,013,187.19
Señalización en pintura	39,520.39	39,520.39	39,520.39	39,520.39
Costos Directos	3,598,423.15	3,853,704.49	3,859,300.22	3,484,717.04
Gastos Generales	385,370.45	385,930.02	348,471.70	332,287.31
Utilidad	192,685.22	192,965.01	174,235.85	166,143.66
Sub Total General	4,138,186.62	4,431,760.16	4,438,195.26	4,007,424.59
IGV	797,716.83	798,875.15	721,336.43	687,834.74
Presupuesto de Obra	4,883,060.21	5,229,476.99	5,237,070.40	4,728,761.02
Supervisión de Obra	78,442.15	78,556.06	70,931.42	67,637.08
Total de Inversión - (S/)	4,956,306.11	5,307,919.15	5,315,626.46	4,799,692.44
Costo US\$	1,242,275.39	1,330,405.58	1,332,337.38	1,203,020.89
Costo US\$/Km	252,649.05	270,572.62	270,965.50	244,665.63
Mantenimiento Rutinario C/P- (S/)	21,946.76	26,468.87	28,553.10	17,933.41
Mantenimiento Periódico C/P- (S/)	53,907.64	52,937.74	57,106.20	35,866.83

Nota: El tratamiento superficial presenta un menor costo de inversión y el pavimento articulado presenta un mayor costo de inversión entre las opciones de pavimentación.

-Metodología VAN y TIR

En la tabla 31 se observa que la proyección del tráfico por cada tipo de vehículo.

 Tabla 31

 Proyección de tráfico con proyecto.

Tipo de Vehículo	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año 10	Año 11	Año 12	Año 13	Año 14	Año 15	Año 16	Año 17	Año 18	Año 19	Año 20
Tráfico Normal Motokar/Moto/Mo	105.00	105.00	105.00	105.00	105.00	105.00	106.00	106.00	106.00	106.00	108.00	107.00	107.00	107.00	108.00	108.00	108.00	108.00	108.00	108.00	108.00
to carga	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Automóvil/Station	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Wagon	58.00	58.00	58.00	58.00	58.00	58.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
Camioneta	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00
Combi	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Camión 2E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Camión 3E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Semi tráiler ≥3s3	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Tráiler > 3E	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Tráfico Generado	0.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00
Motokar/Moto/Mo																					
to carga	0.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
Automóvil/Station																					
Wagon	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Camioneta	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Combi	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Camión 2E	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Camión 3E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Semi tráiler ≥3s3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IMD TOTAL	105.00	121.00	121.00	121.00	121.00	121.00	122.00	122.00	122.00	122.00	124.00	123.00	123.00	123.00	124.00	124.00	124.00	124.00	124.00	124.00	124.00

Nota: Se proyecto un incremento de tráfico al realizar la pavimentación de la zona en un periodo de 20 años.

En la tabla 32 se observa el costo de inversión, costo de mantenimiento rutinario y mantenimiento periódico en precios sociales.

 Tabla 32

 Costos de inversión y mantenimiento a precios sociales

Año	Sin Proyecto Costos de	Pavimento Flexible		Pavimento Rígido		Pavimento A	rticulado	Tratamiento Superficial Bicapa		
1110	Mantenimiento	Inversión	Mantenimiento	Inversión	Mantenimiento	Inversión	Mantenimiento	Inversión	Mantenimiento	
0		3,915,481.83	0	4,193,256.13	0	4,199,344.90		3,791,757.03		
1	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
2	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
3	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
4	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
5	58,005.17		40,430.73		39,703.31		42,829.65		26,900.12	
6	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
7	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
8	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
9	31,400.79		16,460.07		19,851.65		19,851.65		13,450.06	
10	58,005.17		40,430.73		39,703.31		42,829.65		26,900.12	
11	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
12	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
13	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
14	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
15	58,005.17		40,430.73		39,703.31		42,829.65		26,900.12	
16	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
17	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
18	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
19	31,400.79		16,460.07		19,851.65		21,414.82		13,450.06	
20	58,005.17		40,430.73		39,703.31		42,829.65		26,900.12	

Nota: Se realizo una proyección de los costos de mantenimiento periódico y rutinario a precios sociales para las alternativas de pavimentación.

En la tabla 33 se observa el costo de operación vehicular por cada alternativa de pavimentación.

Tabla 33Costos de Operación vehicular

					Co	n Proyecto			
Año	Sin Proyecto	Pavimento Flexible		Pavimento R	Rígido	Pavimento A	articulado	Tratamiento Superficial Bicapa	
		Normal	Generado	Normal	Generado	Normal	Generado	Normal	Generado
1	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80
2	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80
3	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80
4	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80
5	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80
6	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80
7	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80
8	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80
9	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80
10	400,368.99	295,848.93	39,809.80	295848.93	39,809.80	295848.93	39,809.80	295848.93	39,809.80
11	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80
12	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80
13	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80
14	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
15	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
16	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
17	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
18	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
19	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80
20	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80

Nota: Se realizaron los costos de operación vehicular para la vía sin pavimentar y luego para las opciones de pavimentación con un tráfico normal y un tráfico generado.

En la tabla 34 se observa los beneficios por cada alternativa de pavimentación desde el año 1 hasta el año 20.

Tabla 34Beneficios incrementales

Año	Pavimento	Davimento Bísido	Pavimento	Tratamiento
Ano	Flexible	Pavimento Rígido	Articulado	Superficial Bicapa
1	117,909.74	117909.74	117909.74	117909.74
2	117,909.74	117909.74	117909.74	117909.74
3	117,909.74	117909.74	117909.74	117909.74
4	117,909.74	117909.74	117909.74	117909.74
5	117,909.74	117909.74	117909.74	117909.74
6	118,609.17	118609.17	118609.17	118609.17
7	118,609.17	118609.17	118609.17	118609.17
8	118,609.17	118609.17	118609.17	118609.17
9	118,609.17	118609.17	118609.17	118609.17
10	124,424.96	124424.96	124424.96	124424.96
11	119,017.16	119017.16	119017.16	119017.16
12	119,017.16	119017.16	119017.16	119017.16
13	119,017.16	119017.16	119017.16	119017.16
14	119,716.58	119716.58	119716.58	119716.58
15	119,716.58	119716.58	119716.58	119716.58
16	119,716.58	119716.58	119716.58	119716.58
17	119,716.58	119716.58	119716.58	119716.58
18	119,716.58	119716.58	119716.58	119716.58
19	119,716.58	119716.58	119716.58	119716.58
20	119,716.58	119716.58	119716.58	119716.58

Nota: Se realizaron los beneficios incrementales en un periodo de 20 años para las 4 alternativas de

pavimentación.

En la tabla 35 se observa el incremento de valor de la zona de influencia en 20 años cuando se pavimenta el tramo de la Panamericana Norte km 443 hasta Puerto Santa.

Tabla 35 *Plusvalía de terrenos*

Plusvalía			
Sin Proyecto			
Zona de Influencia	Área (m2)	Precio	Total
Puerto Santa	110000	S/ 55	S/ 6,050,000.00
Con Proyecto			
Zona de Influencia	Área (m2)	Precio	Total
Puerto Santa	110000	S/ 88	S/ 9,680,000.00
Beneficio			S/ 3,630,000.00

Nota: La zona de influencia en 20 años obtuvo un incremento de valor en su precio. Se obtuvo un beneficio de S/3,630,000.00.

En la tabla 36 se observa el incremento de valor de la zona de influencia en 20 años cuando se pavimenta el tramo de la Panamericana Norte km 443 hasta Puerto Santa.

Tabla 36Evaluación Costo/beneficio – VAN y TIR – Pavimento flexible

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	3,915,481.83			-3,915,481.83
1		-14,940.72	3,747,909.74	3,762,850.5
2		-14,940.72	117,909.74	132,850.47
3		-14,940.72	117,909.74	132,850.47
4		-14,940.72	117,909.74	132,850.47
5		-17,574.44	117,909.74	135,484.18
6		-14,940.72	118,609.17	133,549.89
7		-14,940.72	118,609.17	133,549.89
8		-14,940.72	118,609.17	133,549.89
9		-14,940.72	118,609.17	133,549.89
10		-17,574.44	124,424.96	141,999.40
11		-14,940.72	119,017.16	133,957.89
12		-14,940.72	119,017.16	133,957.89
13		-14,940.72	119,017.16	133,957.89
14		-14,940.72	119,716.58	134,657.31
15		-17,574.44	119,716.58	137,291.02
16		-14,940.72	119,716.58	134,657.31
17		-14,940.72	119,716.58	134,657.31
18		-14,940.72	119,716.58	134,657.31
19		-14,940.72	119,716.58	134,657.31
20	-195,774.09	-17,574.44	119,716.58	333,065.11
Tasa de				
Descuento:	10.00%		VAN	555,820.71
			TIR	16.25%

Nota: Al realizar la evaluación económica aplicando la metodología del VAN y TIR 20 años, se obtuvo un VAN de S/555,820.71 y un TIR de 16.25% para el pavimento flexible.

En la tabla 37 se observa los beneficios logrados a través de los años y los gastos generados por costos de operación y mantenimiento para el pavimento rígido.

Tabla 37Evaluación– VAN y TIR – Pavimento rígido

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	4,193,256.13			-4,193,256.13
1		-11,549.14	3,747,909.74	3,759,458.9
2		-11,549.14	117,909.74	129,458.88
3		-11,549.14	117,909.74	129,458.88
4		-11,549.14	117,909.74	129,458.88
5		-18,301.86	117,909.74	136,211.60
6		-11,549.14	118,609.17	130,158.30
7		-11,549.14	118,609.17	130,158.30
3		-11,549.14	118,609.17	130,158.30
)		-11,549.14	118,609.17	130,158.30
10		-18,301.86	124,424.96	142,726.82
11		-11,549.14	119,017.16	130,566.30
12		-11,549.14	119,017.16	130,566.30
13		-11,549.14	119,017.16	130,566.30
14		-11,549.14	119,716.58	131,265.72
15		-18,301.86	119,716.58	138,018.44
16		-11,549.14	119,716.58	131,265.72
17		-11,549.14	119,716.58	131,265.72
18		-11,549.14	119,716.58	131,265.72
19		-11,549.14	119,716.58	131,265.72
20	-209,662.81	-18,301.86	119,716.58	347,681.25
Tasa de				
Descuento:			VAN	256,980.4
			TIR	12.55%

Nota: Al realizar la evaluación económica aplicando la metodología del VAN y TIR 20 años, se obtuvo un VAN de S/256,980.4 y un TIR de 12.55% para el pavimento rígido.

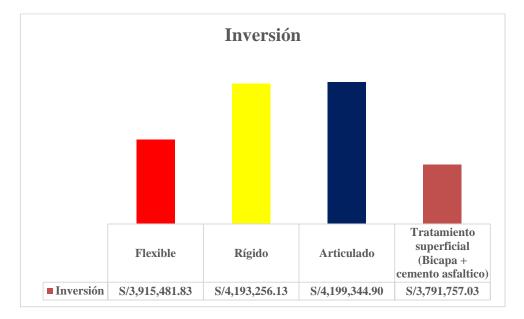
En la tabla 38 se observa los beneficios logrados a través de los años y los gastos generados por costos de operación y mantenimiento para el pavimento articulado.

Tabla 38Evaluación– VAN y TIR – Pavimento articulado

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	4,199,344.90			-4,199,344.90
1		-9,985.97	3,747,909.7	3,757,895.7
2		-9,985.97	117,909.74	127,895.71
3		-9,985.97	117,909.74	127,895.71
4		-9,985.97	117,909.74	127,895.71
5		-15,175.52	117,909.74	133,085.26
6		-9,985.97	118,609.17	128,595.13
7		-9,985.97	118,609.17	128,595.13
8		-9,985.97	118,609.17	128,595.13
9		-11,549.14	118,609.17	130,158.30
10		-15,175.52	124,424.96	139,600.48
11		-9,985.97	119,017.16	129,003.13
12		-9,985.97	119,017.16	129,003.13
13		-9,985.97	119,017.16	129,003.13
14		-9,985.97	119,716.58	129,702.55
15		-15,175.52	119,716.58	134,892.10
16		-9,985.97	119,716.58	129,702.55
17		-9,985.97	119,716.58	129,702.55
18		-9,985.97	119,716.58	129,702.55
19		-9,985.97	119,716.58	129,702.55
20	-209,967.25	-15,175.52	119,716.58	344,859.35
Tasa de				
Descuento:			VAN	236,111.8
			TIR	12.34%

Nota: Al realizar la evaluación económica aplicando la metodología del VAN y TIR 20 años, se obtuvo un VAN de S/236,111.8y un TIR de 12.34% para el tratamiento superficial bicapa + cemento asfaltico.

En la tabla 39 se observa los beneficios logrados a través de los años y los gastos generados por costos de operación y mantenimiento para el tratamiento superficial bicapa+cemento asfaltico.


Tabla 39Evaluación– VAN y TIR – Tratamiento superficial Bicapa + cemento asfaltico

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	3,791,757.03			-3,791,757.03
1		-17,950.73	3,747,909.74	3,765,860.48
2		-17,950.73	117,909.74	135,860.48
3		-17,950.73	117,909.74	135,860.48
4		-17,950.73	117,909.74	135,860.48
5		-31,105.05	117,909.74	149,014.79
6		-17,950.73	118,609.17	136,559.90
7		-17,950.73	118,609.17	136,559.90
8		-17,950.73	118,609.17	136,559.90
9		-17,950.73	118,609.17	136,559.90
10		-31,105.05	124,424.96	155,530.01
11		-17,950.73	119,017.16	136,967.89
12		-17,950.73	119,017.16	136,967.89
13		-17,950.73	119,017.16	136,967.89
14		-17,950.73	119,716.58	137,667.31
15		-31,105.05	119,716.58	150,821.63
16		-17,950.73	119,716.58	137,667.31
17		-17,950.73	119,716.58	137,667.31
18		-17,950.73	119,716.58	137,667.31
19		-17,950.73	119,716.58	137,667.31
20	-189,587.85	-31,105.05	119,716.58	340,409.48
Tasa de				
Descuento:			VAN	718,922.8
			TIR	18.51%

Nota: Al realizar la evaluación económica aplicando la metodología del VAN y TIR 20 años, se obtuvo un VAN de S/718,922.8 y un TIR de 18.51 % para el tratamiento superficial bicapa + cemento asfaltico.

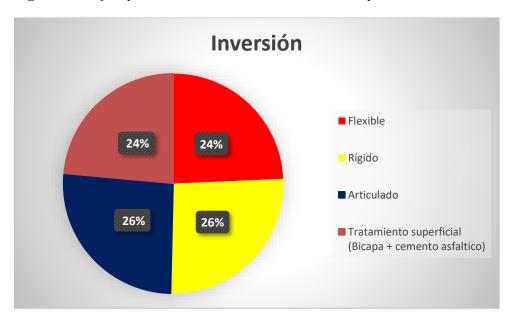
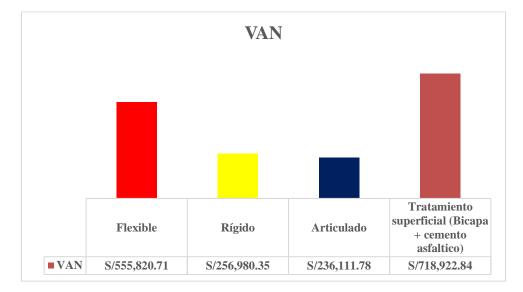


Figura 18.Diagrama de barras-Inversión de alternativas de pavimentación

Nota: El costo de inversión más alto es para el pavimento articulado y el menos costoso es el tratamiento superficial bicapa más cemento asfaltico.

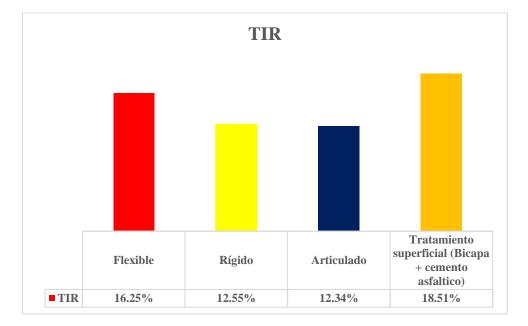

Figura 19. Grafico porcentual- Inversión de alternativas de pavimentación

Nota: El pavimento articulado presenta el costo de inversión más elevado representando un 26% y el menos costoso es el tratamiento superficial bicapa más cemento asfaltico representando un 24%.



Figura 20.Diagrama de barras-VAN de alternativas de pavimentación

Nota: El pavimento articulado presenta un VAN de S/236 111.78, siendo el menor valor de las alternativas de pavimentación. El tratamiento superficial bicapa más cemento asfaltico presenta un VAN de S/718 922.84, siendo el mayor valor de las alternativas de pavimentación.


Figura 21. Grafico porcentual- VAN de alternativas de pavimentación

Nota: El pavimento articulado presenta el menor VAN de las alternativas de pavimentación representado en 13%. El tratamiento superficial bicapa más cemento asfaltico presenta el mayor VAN de las alternativas de pavimentación representado en 41%.

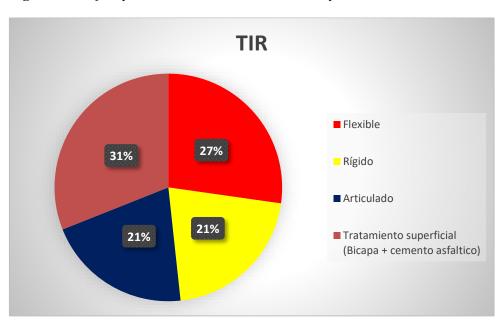


Figura 22.Diagrama de barras-TIR de alternativas de pavimentación

Nota: El pavimento articulado presenta un TIR de S12.34%, siendo el menor valor de las alternativas de pavimentación. El tratamiento superficial bicapa más cemento asfaltico presenta un TIR de 18.51%, siendo el mayor valor de las alternativas de pavimentación.

Figura 23. Grafico porcentual- TIR de alternativas de pavimentación

Nota: El pavimento articulado presenta el menor TIR de las alternativas de pavimentación representado en 21%. El tratamiento superficial bicapa más cemento asfaltico presenta el mayor TIR de las alternativas de pavimentación representado en 31%.

Resumen de resultados

El estudio de mecánica de suelos brindo como resultado un CBR promedio de 10.05%, lo cual clasifica al suelo de la zona como bueno evitando que se realice un mejoramiento de subrasante.

Se realizó el conteo vehicular en la zona obteniendo lo siguiente:

Donématros do disaño		Pavimento				
Parametros de	Parámetros de diseño		Rígido	Articulado		
Periodo	(años)	20	20	20		
ESAL	W18	160,347.26	211,952.02	160,347.26		

Según el ESAL encontrado la vía por pavimentar es clasificada como camino de bajo volumen de tránsito.

El diseño del pavimento se realizó según la metodología AASHTO 93, obteniendo como resultado lo siguiente:

Pavimento	Estructura	Dimensiones
	Carpeta asfáltica	5.08
Flexible	Base	12.7
	Sub base	10.16
	Losa de Concreto	10
Rígido	Base	15
	Sub base	-
	Adoquín	6
Articulado	Cama de arena	4
	Base	17.78

Por recomendación del Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección Suelos y Pavimentos se utilizará 22.00 cm como capa base para el pavimento articulado.

Al realizar el presupuesto por cada alternativa de pavimentación se obtuvo lo siguiente:

Alternativas de pavimentación	Pavimento Flexible	Pavimento Rígido	Pavimento Articulado	Tratamiento superficial (Bicapa + cemento asfaltico)
Inversión	S/3,915,481.83	S/4,193,256.13	S/4,199,344.90	S/3,791,757.03
Costo de Mantenimiento rutinario	21,946.76	26,468.87	28,553.10	17,933.41
Costo de Mantenimiento periódico	53,907.64	52,937.74	57,106.20	35,866.83
VAN	S/555,820.71	S/256,980.35	S/236,111.78	S/718,922.84
TIR	16.25%	12.55%	12.34%	18.51%

De las 4 alternativas de pavimento la que presenta mayor rentabilidad según el valor obtenido del VAN y TIR es la del tratamiento superficial Bicapa + Cemento Asfaltico.

4.2 Discusión

A continuación, se discuten los resultados obtenidos en esta investigación con lo que sostiene:

Bedón (2021) en su investigación obtuvo un CBR de 12%, un ESAL de 308,406.75

considerado como una vía de bajo volumen de tránsito y consiguió los siguientes espesores de capa: 5.00 cm de superficie de rodadura, 10.00 cm de base granular y 20.00 cm de subbase. En los resultados obtenidos en la presente investigación, se obtuvo un CBR de 10%, para el diseño de pavimento flexible se obtuvo un ESAL de 160,347.26, los siguientes espesores de capas: de 5.08 cm de capa de rodadura, una base de 12.70 cm y una sub base de 10.16 cm. Al comparar los resultados con esta presente investigación, se observa que el CBR obtenido en las zonas de estudio difieren en 2%, ambas vías presentan un bajo volumen de tránsito y que la metodología AASHTO 93 es muy efectiva para determinar espesores, pero hay que tener en cuenta las condiciones de diseño estructural y económica, por lo cual un pavimento flexible con una carpeta asfáltica de 3" a 4" no resulta conveniente para una vía con bajo flujo vehicular. Fuertes y Villacis (2019) en su investigación obtuvo un CBR de 17.44 %, un ESAL de 174,000 y se diseñaron 4 alternativas de pavimentación: alternativa 1 presento una superficie de rodadura de 2.5 cm, una base de 17 cm y una sub base de 15cm, alternativa 2 presento una superficie de rodadura de 2.5 cm, una base de 21 cm y una sub base de 15cm, alternativa 3 presento una superficie de rodadura de 15 cm y una sub base de 15cm y la alternativa 4 presento una superficie de rodadura de 12 cm y una sub base de 15cm. La alternativa 3 resulto ser la opción con mayor rentabilidad según los valores del VAN y TIR (1.554 millones de dólares y 17.7%). Al comparar los resultados con esta presente investigación, la opción con mayor rentable en la presente investigación es la que presenta una capa de rodadura de 2.54 cm, una base de 20 cm y una sub base de 20 cm

VAN de S/718,922.84 y un TIR de 18.51% y en la investigación de Fuertes y Villa la opción más rentable es la que presenta una superficie de rodadura de 11 cm con un VAN de 1.554 millones de dólares y un TIR de 17.7%.

Lozada (2018), en su investigación adquirió un CBR de 6.60%, un ESAL de 637 952,23 y obtuvo los siguientes espesores de capa para el diseño del pavimento flexible: 7.62 cm de superficie de rodadura, 15.24 cm de base granular y 20.32 cm de subbase. Para el pavimento articulado se obtuvo 8.00 cm de superficie de rodadura, cama de arena de 4.00 cm, 0 cm de base granular y 44.00 cm de subbase. Además, el pavimento flexible presento un TIR de 14.45% y el pavimento articulado presento un TIR de 16.79%. Al comparar los resultados con esta presente investigación, en Lozada el pavimento flexible y rígido presentan espesores de mayor dimensión debido a que la subrasante presenta un CBR de 6 % inferior al de la zona de Puerto Santa. El pavimento flexible presenta un TIR de 16.25% y el pavimento articulado un TIR de 12.34%, se difiere al mencionar que el pavimento articulado presente una mejor rentabilidad en función a la tasa interna de retorno.

Lorja y Sarmiento (2018) obtuvo en su investigación un CBR inferior a 5%, ESAL de 10,664,443 y obtuvo los siguientes espesores de capa para el diseño del pavimento flexible: 10.16 cm de superficie de rodadura, 33.02 cm de base granular y 101.6 cm de subbase. Al comparar los resultados con esta presente investigación, en la investigación de Loja y Sarmiento se realizó un mejoramiento de suelo y en la presente investigación por tener un CBR de 10 % no es necesario realizar un mejoramiento a la subrasante, el pavimento flexible presenta los siguientes espesores: 7.62 cm de superficie de rodadura, 15.24 cm de base granular y 20.32 cm de subbase, se coincide al mencionar que para obtener un pavimento flexible optimo hay que considerar el flujo vehicular que presenta la vía y se recomienda para una vía con alto flujo vehicular una carpeta asfáltica de 3 a

4" para reducir los espesores del resto de capas.

Gallardo y Pescoran (2019) en su investigación adquirió un CBR de 8.48%, un ESAL de 3'889,505.58 y obtuvo los siguientes espesores de capa para el diseño del pavimento flexible: 10.00 cm de superficie de rodadura, 20.00 cm de base granular y 15.00 cm de subbase. Para el pavimento rígido se obtuvo 20.00 cm de superficie de rodadura y 15.00 cm de base granular. El pavimento flexible obtuvo un presupuesto de 1,468,620.67 soles y el pavimento rígido un presupuesto de 2,152,674.75 soles. En los resultados obtenidos en la presente investigación, se obtuvo un CBR de 10%, el pavimento flexible obtiene un presupuesto de 3,915,481.83 soles y el pavimento rígido adquiere un presupuesto de 4,193,259.13 soles. Al comparar los resultados con esta presente investigación, se coincide al mencionar que el pavimento rígido es más caro que el pavimento flexible. Franco y Vargas (2022) en su investigación adquirió un CBR de 14%, un ESAL de 1,376,138.41 para el pavimento flexible y articulado, para el pavimento rígido un ESAL de 1,463,050.65 y se obtuvo los siguientes espesores de capa para el diseño del pavimento flexible: 7.50 cm de superficie de rodadura, 20.00 cm de base granular y 12.50 cm de subbase, para el pavimento rígido se obtuvo 17.50 cm de superficie de rodadura y 15.00 cm de base granular y para el pavimento articulado una capa de rodadura compuesta por adoquines de 8 cm de espesor, asentados sobre una capa de 4 cm de arena que descansa en una base granular de 27.5 cm. El pavimento flexible obtuvo un presupuesto de S/. 4,461,709.49 soles, el pavimento rígido un presupuesto de S/. 6,364,358.31 soles y el pavimento articulado un presupuesto de S/. 6,257,988.81 soles. Al comparar los resultados con esta presente investigación, el pavimento flexible obtiene un presupuesto de S/. 3,915,481.83 pavimento rígido obtiene un presupuesto de S/. 4,193,259.13 y el pavimento articulado adquiere un presupuesto de S/. 4,199,344.9, se coincide al mencionar que el pavimento flexible es el más ventajoso.

CONCLUSIONES Y

RECOMENDACIONES

Capítulo V: CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Habiendo desarrollado la presente investigación se acepta la hipótesis "El tratamiento superficial bicapa + cemento asfaltico es la alternativa óptima de pavimentación en comparación con las alternativas (pavimento flexible, pavimento rígido y pavimento articulado) con condiciones económicas más rentables a corto y largo plazo de la zona de estudio".

 Al realizar el diseño de la estructura del pavimento flexible, rígido y articulado mediante la metodología AASHTO 93 y el manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos". Se concluye lo siguiente:

Danámatura da disagra			Pavimento	
Parámetros de diseño		Flexible	Rígido	Articulado
Periodo	(años)	20	20	20
ESAL	W18	160,347.26	211,952.024	160,347.26
Módulo de resiliencia Módulo de reacción de la	Mr(ksi)	11.5	-	11.5
subrasante Resistencia al flexo tracción	Ks(psi)	-	202.63	-
del concreto Módulo de elasticidad del	MR(psi)	-	568.94	-
concreto	Ec(psi)	-	3597150.28	-
Confiabilidad	(%R)	70.00%	70.00%	70.00%
Desviación Estándar Normal	(Zr)	-0.524	-0.524	-0.524
Desviación estándar Combinada	(So)	0.45	0.35	0.45
Serviciabilidad inicial	(Si)	3.8	4.1	3.8
Serviciabilidad final	(Pt)	2	2	2
Diferencia de Serviciabilidad	(ΔPSI)	1.8	2.1	1.8
Coeficiente de drenaje Coeficiente de transferencia		1	1	1
de cargas	J	_	2.8	-

- Al determinar la estructura del pavimento flexible, rígido y articulado mediante la metodología AASHTO 93 se concluye lo siguiente:

Pavimento	Estructura	Dimensiones(cm)
	Carpeta asfáltica	5.08
	Base	12.7
Flexible		
	Sub base	10.16
	Losa de Concreto	10
Rígido	Base	15
	Sub base	-
	Adoquín	6
Articulado	Cama de arena	4
	Base	17.78
Tratamiento Superficial	Tratamiento Superficial	2.54
Bicapa + Cemento	Base	20
asfaltico	Sub base	20

El pavimento articulado presenta un mayor espesor de base en comparación del pavimento flexible y rígido, el pavimento rígido y articulado no presenta capa sub base y como superficie de rodadura el pavimento rígido presenta mayor espesor.

Al comparar el costo de inversión mediante los métodos del Valor Actual Neto (VAN)
 y Tasa Interna de Retorno (TIR) se concluye lo siguiente:

Alternativa de Pavimentación	Inversión	VAN	TIR
Pavimento Flexible	S/3,915,481.83	S/555,820.71	16.25%
Pavimento Rígido	S/4,193,256.13	S/256,980.35	12.55%
Pavimento Articulado	S/4,199,344.90	S/236,111.78	12.34%
Tratamiento superficial (Bicapa + cemento asfaltico)	S/3,791,757.03	S/718,922.84	18.51%

De las 4 alternativas de pavimentación, el tratamiento superficial Bicapa + cemento asfáltico resulta ser más rentable a corto plazo y a largo plazo.

5.2 Recomendaciones

- Se recomienda a los estudiantes de ingeniería civil realizar investigaciones, proponiendo otro tipo de tratamiento superficial diferente al propuesto en esta investigación como es el tratamiento superficial bicapa + cemento asfaltico, con el objetivo de comprobar que para la vía analizada siga manteniendo la rentabilidad económica.
- Se recomienda a los ingenieros proyectistas poner atención al proceso constructivo con el objetivo de garantizar que la vía alcance el nivel de serviciabilidad óptima durante el período de diseño.
- Se recomienda a los estudiantes de ingeniería civil realizar investigaciones con mejoramientos a la subrasante para saber cuánto varia la estructura del pavimento flexible, rígido y articulado.
- Se recomienda a las empresas constructoras tener en cuenta la presencia de canales de regadío en la zona con el fin de evitar filtraciones en la vía por desarrollar.
- Se recomienda a población ingenieril, realizar un análisis costo / eficiencia para tener otro factor al momento de elegir la mejor alternativa de pavimentación. El análisis costo/eficiencia expresa los beneficios en impactos físicos (reducción de accidentes) y no en términos monetarios.

CAPÍTULO VI

REFERENCIAS

BIBLIOGRÁFICAS

Capítulo VI: REFERENCIAS BIBLIOGRÁFICAS

- AASHTO. (1993). Guide for Design of Pavement Structures 1993. American

 Association of State Highway and Transportation

 Officials.https://habib00ugm.files.wordpress.com/2010/05/aashto1993.pdf
- Acuña, P. (2012). El urbanismo y la plusvalía urbana. Blog Hatun llapta. Lima, Perú.
- Aguiar J. & Munera J. (2019) Estimación del módulo resiliente para materiales granulares de Costa Rica. *Infraestructura Vial*, 21(37), 12-20. https://dx.doi.org/10.15517/iv.v21i37.42614
- Azaña, E. (2018). Análisis comparativo entre pavimento rígido y flexible en la vía urbanización El Pinar-Centro poblado Mariam, Independencia, Huaraz-2018 (Tesis de Pregrado). Universidad Cesar Vallejo, Perú.
- Bedón, A. (2021). Diseño de pavimentos aplicando la metodología AASHTO 93 mediante la programación de un Software Interactivo (Tesis de Pregrado). Universidad San Francisco de Quito, Ecuador.
- Condor.J.(2016). Tratamiento Superficial Bicapa Con Emulsión Asfáltica De La Carretera Valle Yacus Provincia De Jauja Región Junín 2015(Tesis de Pregrado). Universidad Peruana Los Andes, Perú.
- Chávez, R. (2018). Diseño del pavimento flexible para la av. Morales Suárez, de la vía expresa línea amarilla en la ciudad de Lima. (Tesis de Pregrado). Universidad nacional federico Villarreal, Perú.
- Delgado, L. (2018). Evaluación financiera del proyecto de inversión "Construcción del Hospital General de Cuajimalpa. (Tesis de Postgrado). Instituto Politécnico Nacional, México.
- Delgado, G. (2020). Selección Y Diseño De Pavimento De Bajo Trafico Con Tratamiento Superficial Del Paso Inferior San Clemente - Pisco - Ica 2020"

(Tesis de pregrado). Universidad Señor de Sipán, Perú.

- Diaz, S. (2018). La Revaloración De La Performance Funcional Y Estructural De Los

 Pavimentos Articulados En La Ciudad De Jaén (Tesis de pregrado).

 Universidad Nacional de Cajamarca, Perú.
- Enríquez, N.& Mena, O. (2018). Propuesta de mejoramiento del camino vecinal:

 Pomabamba Huayllán, utilizando mortero asfáltico (Slurry Seal) Provincia de

 Pomabamba 2018(Tesis de pregrado). Universidad Cesar Vallejo, Perú.
- Franco, J. & Vargas, M. (2021). Análisis comparativo entre el Diseño Estructural del Pavimento Flexible, Rígido y Articulado en el Sector Villa Judicial Distrito De Huanchaco Trujillo La Libertad (Tesis de Pregrado). Universidad Privada Antenor Orrego, Perú.
- Fuertes, K. y Villacis, E. (2019). Análisis técnico económico de selección de alternativas de pavimentos para la vía Nanegal Palmitopamba ubicada en el Cantón Quito Provincia de Pichincha (Tesis de pregrado). Universidad Central del Ecuador, Ecuador.
- Gallardo, M. & Pescoran, M. (2019). Análisis Comparativo Del Diseño Estructural

 Del Pavimento Flexible Y Pavimento Rígido Para La Avenida Larco Tramo

 Avenida Huamán Y Avenida Fátima De La Ciudad De Trujillo (Tesis de Pregrado). Universidad Privada Antenor Orrego, Perú.
- Lorja, R. & Sarmiento, J. (2018). Diseño de pavimento flexible para la reconstrucción de las vías: Av. Samuel Cisneros (1.758km), Av. Principal 5 de junio (1.240km), Av. Jaime Nebot (1.380km), Av. Juan León Mera (2.620km), Vía de Acceso 3M (0.247km), de la parroquia Eloy Alfaro cantón Durán provincia del Guayas (Tesis de Pregrado). Universidad Central de Ecuador, Ecuador.

- Lozada, J. (2018). Diseño vial y comparación técnico económica entre pavimento flexible (asfaltico) y pavimento semiflexible (adoquinado) para la urbanización los pinos ubicada en la parroquia Cutuglahua cantón Mejía provincia Pichincha (Tesis de Pregrado). Universidad Politécnica Salesiana, Ecuador.
- López, D.& Yanez, C. (2018). Diseño de pavimento articulado para mejorar el uso peatonal en la Calle Las Pizzas Del Distrito de Miraflores Lima 2021 (Tesis de Pregrado). Universidad Cesar Vallejo, Perú.
- Lozada, G. (2018). La plusvalía urbana como mecanismo para mejorar el financiamiento de infraestructura pública en la ciudad de Nuevo Chimbote, 2018 (Tesis de Pregrado). Universidad San Pedro, Perú.
- Ministerio de Transportes y Comunicaciones [MTC]. (2014). *Manual de CarreterasSuelos Geología, Geotécnia y Pavimentos. Lima-Perú*. http://transparencia.mtc.gob.pe/idm_docs/P_recientes/4515.pdf
- Ministerio de Transporte y Comunicaciones del Perú (MTC). (2008). *Manual de Diseño de Carreteras Pavimentadas de Bajo Volumen de Tránsito*. Lima: Dirección General de Caminos y Ferrocarrileshttp://www.sutran.gob.pe/wp-content/uploads/2015/08/manualdedisenodecarreterasnopavimentadasdebajovo lumendetransito.pdf
- Myers, B. (2011). Principles of Corporate Finance. USA: The McGraw-Hill Companies.
- Montejo, A. (2002). *Ingeniería de pavimentos: Fundamentos, estudios básicos y diseño*. (2da ed.). Universidad Católica de Colombia.
- Morante, H. (2019). Pavimento Flexible con Tratamiento Superficial para Aeródromo de Trafico Ligero (Tesis de Pregrado). Universidad de Piura, Perú.

- Pacheco, E (2020). Análisis de la valoración de proyectos a través del método de opciones reales: aplicación a un proyecto real del sector minero metalúrgico en el Perú (Tesis de Pregrado). Pontificia Universidad Católica, Perú.
- Reglamento Nacional de Edificaciones. (2010). *Norma CE.010-Pavimentos Urbanos*. *Lima*.http://www3.vivienda.gob.pe/dnc/archivos/Estudios_Normalizacion/Normalizacion/normas/norma_010_%20pavimentos_urbanos.pdf
- Robledo, J. (noviembre del 2004). Población de estudio y muestreo en la investigación epidemiológica. *Nure Investigación*, nº 10.
- Rivas, A. (2022, junio 01). Normas APA: La guía definitiva para presentar trabajos escritos. *Guía Normas APA*. https://normasapa.in/
- Ministerio de transporte y comunicaciones. (2006). Manual técnico de mantenimiento rutinario para la red vial departamental no pavimentada. https://www.sutran.gob.pe/wpcontent/uploads/2015/08/manualmatenimiento_r utinario_para_la_red_vial_departamental__no_pavimentada.pdf
- Ministerio de Economía y finanzas. (2021). Nota técnica para el uso de los precios sociales en la evaluación social de proyectos de inversión. https://www.mef.gob.pe/contenidos/inv_publica/anexos/anexo2_RD006_2021 EF6301.pdf
- Ministerio de Transportes y Comunicaciones. (2018). Glosario de Términos de Uso Frecuente en Proyectos de Infraestructura Vial. Lima. http://transparencia.mtc.gob.pe/idm_docs/normas_legales/1_0_1556.pdf
- Torres, J. & Paredes, J. (2017). Análisis de rentabilidad económica de los nuevos alojamientos turísticos regulados por el ministerio de turismo en el año 2015 para determinar el punto de equilibrio en puerto Ayora Galápagos (Tesis de Pregrado). Universidad Central de Ecuador, Ecuador.

Vega, D. (2018). Diseño De Los Pavimentos De La Carretera De Acceso Al Nuevo Puerto De Yurimaguas (Km 1+000 A 2+000) (Tesis de pregrado). Universidad Católica del Perú, Perú.

Virreira, M. (2020) Evaluación financiera de proyectos de inversión métodos y aplicacion. UPSA. https://www.upsa.edu.bo/images/libro_evaluacion-financiera-de-proyectos-de-inversion.pdf

CAPÍTULO VII

ANEXOS

Capítulo VII: ANEXOS

7.1 Anexo 01 – Estudio de mecánica de suelos

7.1.1 Ensayo para determinar el contenido de humedad de una muestra de suelo-NTP 339.127-Calicata 01.

PROYECTO:

ENSAYO: MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

AOPPS-CH-001

NORMA: NTP 339.128

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA APLICACIÓN: SUBRASANTE

CONTENIDO DE HUMEDAD			
A Peso de la muestra húmeda.	g.	2675.0	2550.0
B Peso de muestra seca	g.	2185.0	2085.0
C Peso del recipiente	g.	0.0	0.0
D Contenido de humedad	%	22.4	22.3
E Contenido de humedad (promedio)	%	2	22.4

7.1.2 Ensayo para determinar el contenido de humedad de una muestra de suelo-NTP 339.127-Calicata 02

ENSAYO: MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

AOPPS-CH-002

NORMA: NTP 339.128

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA APLICACIÓN: SUBRASANTE

CONTENIDO DE HUMEDAD			
A Peso de la muestra húmeda.	g.	2585.0	2595.0
B Peso de muestra seca	g.	2115.0	2188.0
C Peso del recipiente	g.	0.0	0.0
D Contenido de humedad	%	22.2	18.6
E Contenido de humedad (promedio)	%	20	0.4

7.1.3 Ensayo para determinar el contenido de humedad de una muestra de suelo-NTP 339.127-Calicata 03

ENSAYO: MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

AOPPS-CH-003

NORMA: NTP 339.128

PROYECTO: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO:

PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

UBICACIÓN: PUERTO SANTA APLICACIÓN: SUBRASANTE

CONTENIDO DE HUMEDAD			
A Peso de la muestra húmeda.	g.	2460.0	2925.0
B Peso de muestra seca	g.	2105.0	2518.0
C Peso del recipiente	g.	0.0	0.0
D Contenido de humedad	%	16.9	16.2
E Contenido de humedad (promedio)	%	1	16.6

7.1.4 Ensayo para determinar el contenido de humedad de una muestra de suelo-NTP 339.127-Calicata 04

ENSAYO: MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

AOPPS-CH-004

NORMA: NTP 339.128

PROYECTO: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO:

PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

UBICACIÓN: PUERTO SANTA APLICACIÓN: SUBRASANTE

CONTENIDO DE HUMEDAD			
A Peso de la muestra húmeda.	g.	2395.0	2910.0
B Peso de muestra seca	g.	2025.0	2502.0
C Peso del recipiente	g.	0.0	0.0
D Contenido de humedad	%	18.3	16.3
E Contenido de humedad (promedio)	%		17.3

7.1.5 Ensayo para determinar el contenido de humedad de una muestra de suelo-NTP 339.127-Calicata 05

ENSAYO: MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

AOPPS-CH-005

NORMA: NTP 339.128

PROYECTO: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO:

PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

UBICACIÓN: PUERTO SANTA APLICACIÓN: SUBRASANTE

CONTENIDO DE HUMEDAD			
A Peso de la muestra húmeda.	g.	2305.0	2900.0
B Peso de muestra seca	g.	2045.0	2586.0
C Peso del recipiente	g.	0.0	0.0
D Contenido de humedad	%	12.7	12.1
E Contenido de humedad (promedio)	%	1	2.4

7.1.6 Ensayo para determinar el análisis granulométrico de una muestra de suelo-NTP 339.128-Calicata 01

ENSAYO: MÉTODO DE ENSAYO PARA ANÁLISIS GRANULOMÉTRICO

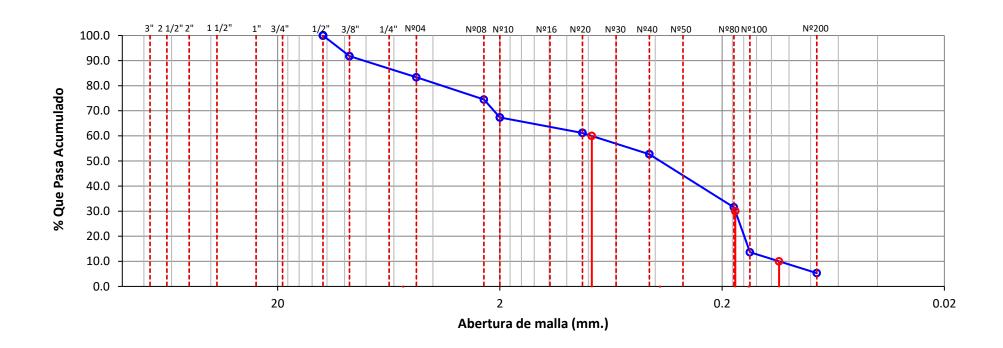
AOPPS-AG-001

NORMA: NTP 339.127

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA TIPO/COD. MUESTRA: CALICATA 1

PUERTO SANTA"


UBICACIÓN :PUERTO SANTAAPLICACIÓN:SUBRASANTELUGAR DE :SANTAFECHA:1/08/2022

TAMIO	CES	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
(PULG)	(mm)				111011
3"	75.000				
2 1/2"	63.000				
2"	50.000				
1 1/2"	37.500				
1"	25.000				
3/4"	19.000				
1/2"	12.500	0.0	0.0	0.0	100.0
3/8"	9.500	45.0	8.2	8.2	91.8
1/4"	6.300		0.0		
N°04	4.750	46.0	8.4	16.7	83.3
N°08	2.360	48.5	8.9	25.5	74.5
Nº10	2.000	39	7.1	32.7	67.3
Nº16	1.190				
N°20	0.850	33.6	6.1	38.8	61.2
N°30	0.600		0.0		
N°40	0.425	46.5	8.5	47.3	52.7
N°50	0.300		0.0		
N°80	0.177	115.6	21.2	68.5	31.5
N°100	0.150	97.8	17.9	86.4	13.6
N°200	0.075	45.5	8.3	94.7	5.3
< N°200	FONDO	29.0	5.3	100.0	0.0

DESCRIPCIÓN DE .	LA MUE	ESTRA
% GRAVA	:	16.7 %
% ARENA	:	78.0 %
% PASANTE MALLA 200	:	5.3 %
CLASIFICACIÓN SUELO:		
S.U.C.S.	:	SP-SM
AASHTO	:	A-3 (0)

CURVA GRANULOMETRICA

7.1.7 Ensayo para determinar el análisis granulométrico de una muestra de suelo-NTP 339.128-Calicata 02

ENSAYO: MÉTODO DE ENSAYO PARA ANÁLISIS GRANULOMÉTRICO

AOPPS-AG-002

NORMA: NTP 339.127

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA TIPO/COD. MUESTRA:

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

LUGAR DE : SANTA FECHA: 1/08/2022

TAMIO	CES	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
(PULG)	(mm)				
3"	75.000				
2 1/2"	63.000				
2"	50.000				
1 1/2"	37.500				
1"	25.000				
3/4"	19.000				
1/2"	12.500	0.0	0.0	0.0	100.0
3/8"	9.500	45.0	8.3	8.3	91.7
1/4"	6.300		0.0		
N°04	4.750	48.0	8.9	17.2	82.8
N°08	2.360	45.0	8.3	25.6	74.4
N°10	2.000	38.5	7.1	32.7	67.3
N°16	1.190				
N°20	0.850	33.7	6.2	39.0	61.0
N°30	0.600		0.0		
N°40	0.425	47.2	8.8	47.7	52.3
N°50	0.300		0.0		
N°80	0.177	116.5	21.6	69.3	30.7
N°100	0.150	95.6	17.7	87.1	12.9
N°200	0.075	43.8	8.1	95.2	4.8
< N°200	FONDO	26.0	4.8	100.0	0.0

DESCRIPCIÓN DE	LA MUE	STRA
% GRAVA	:	17.2 %
% ARENA	:	77.9 %
% PASANTE MALLA 200	:	4.8 %
CLASIFICACIÓN SUELO:		
S.U.C.S.	:	SP
AASHTO	:	A-3 (0)

CALICATA 2

CURVA GRANULOMETRICA

7.1.8 Ensayo para determinar el análisis granulométrico de una muestra de suelo-NTP 339.128-Calicata 03

ENSAYO: MÉTODO DE ENSAYO PARA ANÁLISIS GRANULOMÉTRICO

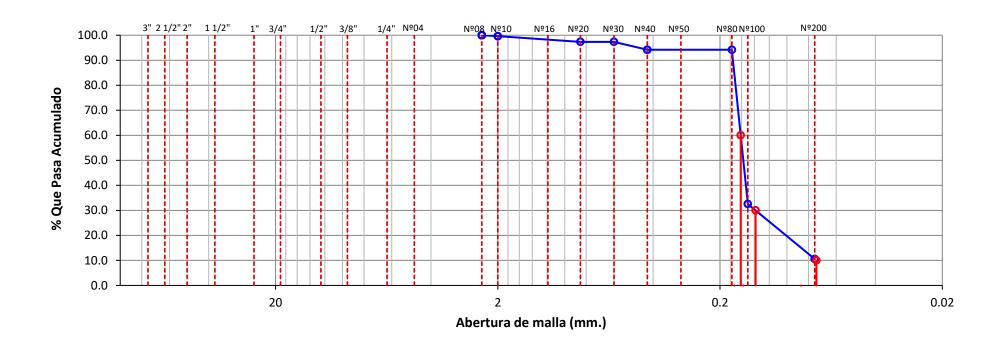
AOPPS-AG-003

NORMA: NTP 339.127

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA TIPO/COD. MUESTRA: CALICATA 3

PUERTO SANTA"


UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

TAMIO	CES	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE
(PULG)	(mm)		PARCIAL		PASA
3"	75.000				
2 1/2"	63.000				
2"	50.000				
1 1/2"	37.500				
1"	25.000				
3/4"	19.000				
1/2"	12.500	0.0	0.0	0.0	
3/8"	9.500	0.0	0.0	0.0	
1/4"	6.300	0.0	0.0	0.0	
N°04	4.750	0.0	0.0	0.0	
N°08	2.360	0.0	0.0	0.0	100.0
N°10	2.000	2.1	0.4	0.4	99.6
N°16	1.190				
N°20	0.850	13.0	2.3	2.7	97.3
N°30	0.600	0.0	0.0	2.7	97.3
N°40	0.425	18.0	3.2	5.8	94.2
N°50	0.300		0.0		
N°80	0.177	0.0	0.0	5.8	94.2
N°100	0.150	350.0	61.6	67.4	32.6
N°200	0.075	125.0	22.0	89.4	10.6
< N°200	FONDO	60.0	10.6	100.0	0.0

DESCRIPCIÓN DE 1	LA MU	ESTRA	
% GRAVA	:	0.0	%
% ARENA	:	89.4	%
% PASANTE MALLA 200	:	10.6	%
CLASIFICACIÓN SUELO:			
S.U.C.S.	:	SP-SM	
AASHTO	:	A-2-4 (0)	

CURVA GRANULOMETRICA

7.1.9 Ensayo para determinar el análisis granulométrico de una muestra de suelo-NTP 339.128-Calicata 04

ENSAYO: MÉTODO DE ENSAYO PARA ANÁLISIS GRANULOMÉTRICO

AOPPS-AG-004

NORMA: NTP 339.127

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA PROYECTO:

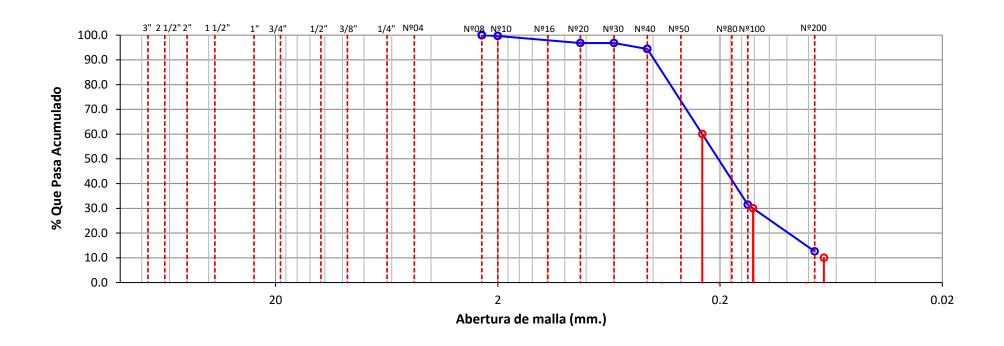
EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA

LUGAR DE **SANTA**

TIPO/COD. MUESTRA:	CALICATA 4


SUBRASANTE **APLICACIÓN:** FECHA: 1/08/2022

TAMIO	CES	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE
(PULG)	(mm)	RETERIDO	PARCIAL	TICCHICETIE C	PASA
3"	75.000				
2 1/2"	63.000				
2"	50.000				
1 1/2"	37.500				
1"	25.000				
3/4"	19.000				
1/2"	12.500	0.0	0.0	0.0	100.0
3/8"	9.500	25.0	5.2	5.2	94.8
1/4"	6.300				
N°04	4.750	45.0	9.3	14.5	85.5
N°08	2.360	50.0	10.4	24.9	75.1
N°10	2.000	40	8.3	33.2	66.8
N°16	1.190				
N°20	0.850	32.0	6.6	39.8	60.2
N°30	0.600		0.0		
N°40	0.425	45.0	9.3	49.2	50.8
N°50	0.300		0.0		
N°80	0.177	110.0	22.8	72.0	28.0
N°100	0.150	95.0	19.7	91.7	8.3
N°200	0.075	15.0	3.1	94.8	5.2
< N°200	FONDO	25.0	5.2	100.0	0.0

DESCRIPCIÓN DE LA MUESTRA		
% GRAVA	:	14.5 %
% ARENA	:	80.3 %
% PASANTE MALLA 200	:	5.2 %
CLASIFICACIÓN SUELO:		
S.U.C.S.	:	SP-SM
AASHTO	:	A-3 (0)

CURVA GRANULOMETRICA

7.1.10 Ensayo para determinar el análisis granulométrico de una muestra de suelo-NTP 339.128-Calicata 05

ENSAYO: MÉTODO DE ENSAYO PARA ANÁLISIS GRANULOMÉTRICO

AOPPS-AG-005

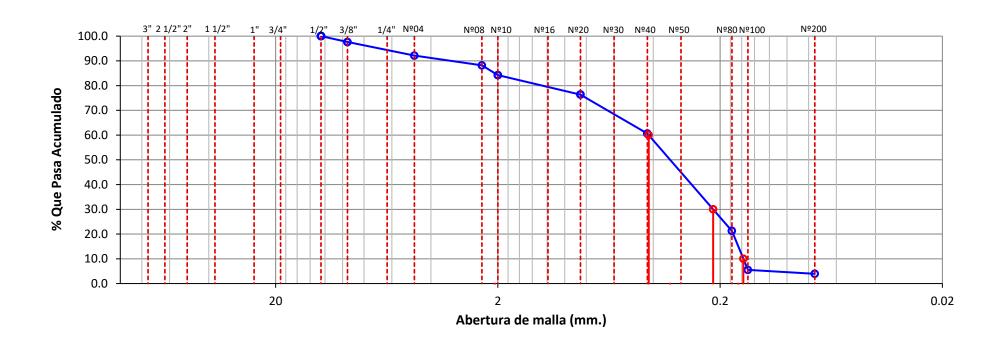
NORMA: NTP 339.127

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA PROYECTO:

EL TRAMO: PANAMERICANA NORTE KM 443 HASTA TIPO/COD. MUESTRA:

PUERTO SANTA"

UBICACIÓN : APLICACIÓN: PUERTO SANTA **SUBRASANTE** LUGAR DE FECHA: **SANTA** 1/08/2022


TAMIO	TAMICES		% RETENIDO	% RETENIDO ACUMULADO	% QUE
(PULG)	(mm)	RETENIDO	PARCIAL	TICCHICETIE C	PASA
3"	75.000				
2 1/2"	63.000				
2"	50.000				
1 1/2"	37.500				
1"	25.000				
3/4"	19.000				
1/2"	12.500	0.0	0.0	0.0	
3/8"	9.500	0.0	0.0	0.0	
1/4"	6.300	0.0		0.0	
N°04	4.750	0.0	0.0	0.0	
N°08	2.360	0.0	0.0	0.0	100.0
N°10	2.000	2.1	0.3	0.3	99.7
Nº16	1.190		0.0		
N°20	0.850	18.1	2.8	3.2	96.8
N°30	0.600	0.0	0.0	3.2	96.8
N°40	0.425	15.2	2.4	5.6	94.4
N°50	0.300		0.0		
N°80	0.177		0.0		
N°100	0.150	400.0	63.0	68.5	31.5
N°200	0.075	120.0	18.9	87.4	12.6
< N°200	FONDO	80.0	12.6	100.0	0.0

DESCRIPCIÓN DE LA MUESTRA						
% GRAVA	:	0.0	%			
% ARENA	:	87.4	%			
% PASANTE MALLA 200	:	12.6	%			
CLASIFICACIÓN SUELO:						
S.U.C.S.	:	SM				
AASHTO	:	A-2-4 (0)				

CALICATA 5

CURVA GRANULOMETRICA

7.1.11 Ensayo para determinar el L.L,L.P e I.P de una muestra de suelo-NTP 339.129-Calicata 01

UNS NACIONAL DEL SANTA ENSAYO: DETERMINACIÓN DE LÍMITE LÍQUIDO, LIMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

AOPPS-IP-001

NORMA: NTP 339.129

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA

PROYECTO: EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

TIPO/COD. MUESTRA:

CALICATA 1

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

DATOS DE ENSAYO.	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			LÍMITE PLÁSTICO
N° de tarro	2	5	7	3 8
N° de golpes				
Tarro + suelo húmedo				
Tarro + suelo seco				
Agua				
Peso del tarro				
Peso del suelo seco				
Porcentaje de humedad				

CONSISTENCIA FÍSICA DE LA MUESTRA	
Límite Líquido	NP
Límite Plástico	NP
Índice de Plasticidad (Malla N°40)	NP

7.1.12 Ensayo para determinar el L.L,L.P e I.P de una muestra de suelo-NTP 339.129-Calicata 02

UNS NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DE LÍMITE LÍQUIDO, LIMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

AOPPS-IP-002

NORMA: NTP 339.129

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA

PROYECTO: EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

TIPO/COD. MUESTRA:

CALICATA 2

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

DATOS DE ENSAYO.	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			ÍMITE PLÁSTICO
N° de tarro	2	5	7 3	8
N° de golpes				
Tarro + suelo húmedo				
Tarro + suelo seco				
Agua				
Peso del tarro				
Peso del suelo seco				
Porcentaje de humedad				

CONSISTENCIA FÍSICA DE LA MUESTRA	
Límite Líquido	NP
Límite Plástico	NP
Índice de Plasticidad (Malla N°40)	NP

7.1.13 Ensayo para determinar el L.L,L.P e I.P de una muestra de suelo-NTP 339.129-Calicata 03

UNS UNIVERSIDAD NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DE LÍMITE LÍQUIDO, LIMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

AOPPS-IP-003

NORMA: NTP 339.129

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA

PROYECTO: EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

TIPO/COD. MUESTRA:

CALICATA 3

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

DATOS DE ENSAYO.	LÍMITE LÍQUIDO LÍMITE PLÁSTIC			E PLÁSTICO	
N° de tarro	2	5	7	3	8
N° de golpes					
Tarro + suelo húmedo					
Tarro + suelo seco					
Agua					
Peso del tarro					
Peso del suelo seco					
Porcentaje de humedad					

CONSISTENCIA FÍSICA DE LA MUESTRA	
Límite Líquido	NP
Límite Plástico	NP
Índice de Plasticidad (Malla N°40)	NP

7.1.14 Ensayo para determinar el L.L,L.P e I.P de una muestra de suelo-NTP 339.129-Calicata 04

ENSAYO: DETERMINACIÓN DE LÍMITE LÍQUIDO, LIMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

AOPPS-IP-004

NORMA: NTP 339.129

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA

PROYECTO: EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

TIPO/COD. MUESTRA:

CALICATA 4

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

Datos de ensayo.		Límite líquido			Límite Plástico		
N° de tarro	2	5	7	3	8		
N° de golpes	35	25	15				
Tarro + suelo húmedo	57.50	51.90	55.00	25.24	26.15		
Tarro + suelo seco	51.20	46.00	48.00	24.35	25.00		
Agua	6.30	5.90	7.00	0.89	1.15		
Peso del tarro	19.72	19.39	19.72	19.72	19.30		
Peso del suelo seco	31.48	26.61	28.28	4.63	5.70		
Porcentaje de humedad	20.01%	22.17%	24.75%	19.22%	20.18%		

Límite Líquido	21.99
Límite Plástico	19.70
Índice de Plasticidad (Malla N°40)	2

7.1.15 Ensayo para determinar el L.L, L.P e I.P de una muestra de suelo-NTP 339.129-Calicata 01

UNS NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DE LÍMITE LÍQUIDO, LIMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

AOPPS-IP-005

NORMA: NTP 339.129

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA

PROYECTO: EL TRAMO: PANAMERICANA NORTE KM 443 HASTA

TIPO/COD. MUESTRA:

CALICATA 5

PUERTO SANTA"

UBICACIÓN : PUERTO SANTA APLICACIÓN: SUBRASANTE

DATOS DE ENSAYO.	LÍMITE LÍQUIDO LÍMITE PLÁSTIC			E PLÁSTICO	
N° de tarro	2	5	7	3	8
N° de golpes					
Tarro + suelo húmedo					
Tarro + suelo seco					
Agua					
Peso del tarro					
Peso del suelo seco					
Porcentaje de humedad					

CONSISTENCIA FÍSICA DE LA MUESTRA	
Límite Líquido	NP
Límite Plástico	NP
Índice de Plasticidad (Malla N°40)	NP

7.1.16 Ensayo de compactación del suelo en laboratorio utilizando una energía modificada-C 01 (Proctor modificado)-MTC 115

ENSAYO: COMPACTACIÓN DEL SUELO EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADO (PROCTOR MODIFICADO)

AOPPS-PM-001

NORMA: MTC E 115

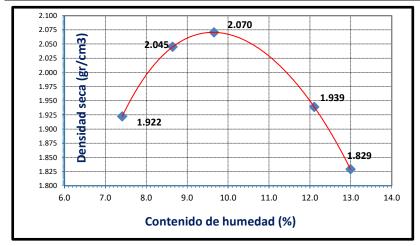
PROYECTO: "ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO:

PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE


FECHA: 01/08/2022

PESO DEL SUELO HÚMEDO COMPACTADO + MOLDE (gr)	10733	11062	11164	10961	10737
PESO DEL MOLDE (gr)	6407	6407	6407	6407	6407
PESO DEL SUELO HÚMEDO COMPACTADO (gr)	4326	4655	4757	4554	4330
PESO VOLUMÉTRICO HÚMEDO (gr/cm3)	2.065	2.222	2.270	2.174	2.067

TARA N°	T1	T2	T3	T4	T 5
PESO DEL SUELO HÚMEDO + TARA (gr)	74.10	73.99	75.10	77.70	74.10
PESO DEL SUELO SECO + TARA (gr)	70.65	69.98	70.60	71.90	68.50
PESO DE LA TARA (gr)	24.10	23.60	24.00	24.00	25.40
PESO DEL AGUA (gr)	3.45	4.01	4.50	5.80	5.60
PESO DEL SUELO SECO (gr)	46.55	46.38	46.60	47.90	43.10

CONTENIDO DE AGUA (%)	7.41	8.65	9.66	12.11	12.99
PESO VOLUMÉTRICO SECO (gr/cm3)	1.922	2.045	2.070	1.939	1.829

MÁXIMA DENSIDAD SECA (gr/cm3)
2.070
OPTIMO CONTENIDO DE HUMEDAD (%)
9.50

7.1.17 Ensayo de compactación del suelo en laboratorio utilizando una energía modificada-C 02 (Proctor modificado)-MTC 115

ENSAYO: COMPACTACIÓN DEL SUELO EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADO (PROCTOR MODIFICADO)

AOPPS-PM-002

NORMA: MTC E 115

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

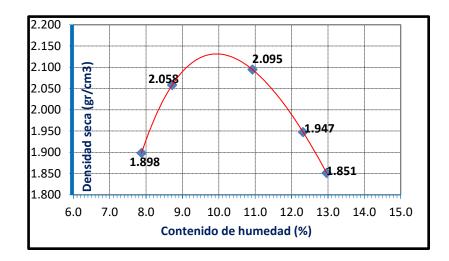
PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE


FECHA: 01/08/2022

PESO DEL SUELO HÚMEDO COMPACTADO + MOLDE (gr)	10698	11095	11275	10990	10789
PESO DEL MOLDE (gr)	6407	6407	6407	6407	6407
PESO DEL SUELO HÚMEDO COMPACTADO (gr)	4291	4688	4868	4583	4382
PESO VOLUMÉTRICO HÚMEDO (gr/cm3)	2.048	2.237	2.323	2.187	2.091

TARA N°	T1	T2	73	T4	T 5
PESO DEL SUELO HÚMEDO + TARA (gr)	74.10	73.99	76.80	77.80	74.20
PESO DEL SUELO SECO + TARA (gr)	70.45	69.95	71.60	71.90	68.60
PESO DE LA TARA (gr)	24.10	23.60	24.00	24.00	25.40
PESO DEL AGUA (gr)	3.65	4.04	5.20	5.90	5.60
PESO DEL SUELO SECO (gr)	46.35	46.35	47.60	47.90	43.20

CONTENIDO DE AGUA (%)	7.87	8.72	10.92	12.32	12.96
PESO VOLUMÉTRICO SECO (gr/cm3)	1.898	2.058	2.095	1.947	1.851

MÁXIMA DENSIDAD SECA
(gr/cm3)
2.135

OPTIMO				
CONTENIDO DE				
HUMEDAD (%)				
10.00				

7.1.18 Ensayo de compactación del suelo en laboratorio utilizando una energía modificada-C 03 (Proctor modificado)-MTC 115

UNS NACIONAL DEL SANTA

ENSAYO: COMPACTACIÓN DEL SUELO EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADO (PROCTOR MODIFICADO)

AOPPS-PM-003

NORMA: MTC E 115

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

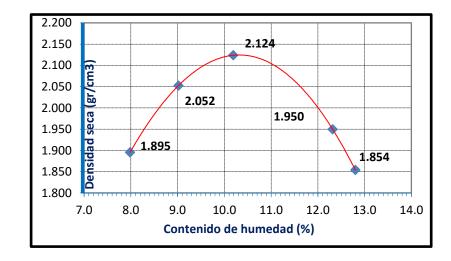
PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE


FECHA: 01/08/2022

PESO DEL SUELO HÚMEDO COMPACTADO + MOLDE (gr)	10695	11095	11310	10995	10789
PESO DEL MOLDE (gr)	6407	6407	6407	6407	6407
PESO DEL SUELO HÚMEDO COMPACTADO (gr)	4288	4688	4903	4588	4382
PESO VOLUMÉTRICO HÚMEDO (gr/cm3)	2.047	2.237	2.340	2.190	2.091

TARA N°	T1	T2	Т3	T4	T5
PESO DEL SUELO HÚMEDO + TARA (gr)	74.15	74.13	76.45	77.80	74.13
PESO DEL SUELO SECO + TARA (gr)	70.45	69.95	71.60	71.90	68.60
PESO DE LA TARA (gr)	24.10	23.60	24.00	24.00	25.40
PESO DEL AGUA (gr)	3.70	4.18	4.85	5.90	5.53
PESO DEL SUELO SECO (gr)	46.35	46.35	47.60	47.90	43.20

CONTENIDO DE AGUA (%)	7.98	9.02	10.19	12.32	12.80
PESO VOLUMÉTRICO SECO (gr/cm3)	1.895	2.052	2.124	1.950	1.854

MÁXIMA DENSIDAD SECA
(gr/cm3)
2.125

OPTIMO CONTENIDO DE HUMEDAD (%)	
10.40	

7.1.19 Ensayo de compactación del suelo en laboratorio utilizando una energía modificada-C 04 (Proctor modificado)-MTC 115

UNS NACIONAL DEL SANTA

ENSAYO: COMPACTACIÓN DEL SUELO EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADO (PROCTOR MODIFICADO)

AOPPS-PM-004

NORMA: MTC E 115

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

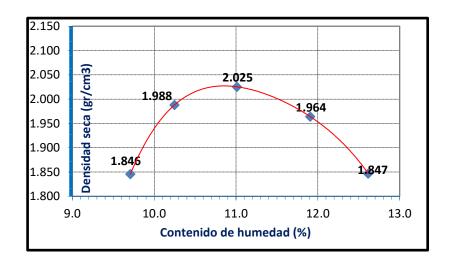
PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE


FECHA: 01/08/2022

PESO DEL SUELO HÚMEDO COMPACTADO + MOLDE (gr)	10650	10999	11118	11012	10765
PESO DEL MOLDE (gr)	6407	6407	6407	6407	6407
PESO DEL SUELO HÚMEDO COMPACTADO (gr)	4243	4592	4711	4605	4358
PESO VOLUMÉTRICO HÚMEDO (gr/cm3)	2.025	2.192	2.248	2.198	2.080

TARA N°	T1	T2	Т3	T4	T5
PESO DEL SUELO HÚMEDO + TARA (gr)	74.95	74.70	77.23	77.38	74.05
PESO DEL SUELO SECO + TARA (gr)	70.45	69.95	71.95	71.70	68.60
PESO DE LA TARA (gr)	24.10	23.60	24.00	24.00	25.40
PESO DEL AGUA (gr)	4.50	4.75	5.28	5.68	5.45
PESO DEL SUELO SECO (gr)	46.35	46.35	47.95	47.70	43.20

CONTENIDO DE AGUA (%)	9.71	10.25	11.01	11.91	12.62
PESO VOLUMÉTRICO SECO (gr/cm3)	1.846	1.988	2.025	1.964	1.847

MÁXIMA	
DENSIDAD SECA	
(gr/cm3)	
2.025	

OPTIMO							
CONTENIDO DE							
HUMEDAD (%)							
11.00							

7.1.20 Ensayo de compactación del suelo en laboratorio utilizando una energía modificada-C 04 (Proctor modificado)-MTC 115

UNS NACIONAL DEL SANTA

ENSAYO: COMPACTACIÓN DEL SUELO EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADO (PROCTOR MODIFICADO)

AOPPS-PM-005

NORMA: MTC E 115

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

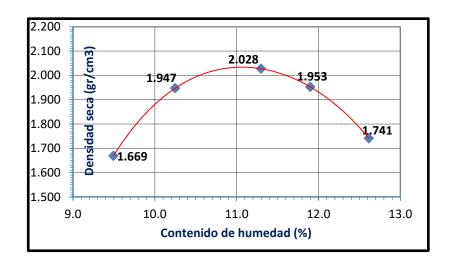
SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE

FECHA: 01/08/2022


PESO DEL SUELO HÚMEDO COMPACTADO + MOLDE (gr)	10235	10905	11135	10985	10515
PESO DEL MOLDE (gr)	6407	6407	6407	6407	6407
PESO DEL SUELO HÚMEDO COMPACTADO (gr)	3828	4498	4728	4578	4108
PESO VOLUMÉTRICO HÚMEDO (gr/cm3)	1.827	2.147	2.257	2.185	1.961

TARA N°	T1	T2	T3	T4	T5
PESO DEL SUELO HÚMEDO + TARA (gr)	74.85	74.70	77.20	77.60	74.05
PESO DEL SUELO SECO + TARA (gr)	70.45	69.95	71.80	71.90	68.60
PESO DE LA TARA (gr)	24.10	23.60	24.00	24.00	25.40

PESO DEL AGUA (gr)	4.40	4.75	5.40	5.70	5.45
PESO DEL SUELO SECO (gr)	46.35	46.35	47.80	47.90	43.20

CONTENIDO DE AGUA (%)	9.49	10.25	11.30	11.90	12.62
PESO VOLUMÉTRICO SECO (gr/cm3)	1.669	1.947	2.028	1.953	1.741

MÁXIMA DENSIDAD SECA	
(gr/cm3)	
2.030	

OPTIMO CONTENIDO DE HUMEDAD (%) 11.30

7.1.21 Ensayo para determinar el CBR una muestra de suelo-NTP 339.145

UNS NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DEL CBR (CALIFORNIA BEARING RATIO VALOR SOPORTE DE CALIFORNIA) MEDIDO EN MUESTRAS COMPACTADAS EN LABORATORIO

AOPPS-CBR-001

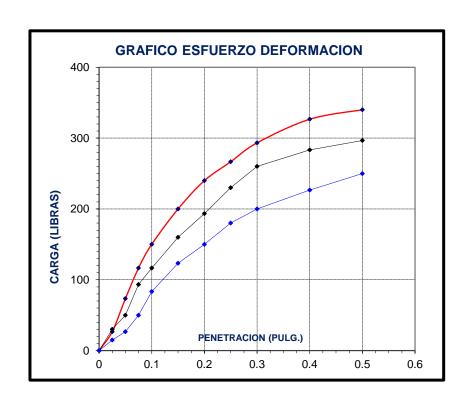
NORMA: NTP 339.145

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA


LUGAR DE: SANTA


APLICACIÓN: SUBRASANTE

DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2
5	80	. 27	4	90	30	3	45	15
6	220	73	5	150	50	4	80	27
6	350	117	5	280	93	5	150	50
7	450	150	6	350	117	5	250	83
8	600	200	7	480	160	6	370	123
9	720	240	8	580	193	6	450	150
11	800	267	10	690	230	7	540	180
13	880	293	11	780	260	8	600	200
15	980	327	13	850	283	10	680	227
17	1020	340	15	890	297	11	750	250
MDS	2.070	gr/cm3	OCH 9.50 %					

RESULTADO		
%CBR 100%MDS	2.07	14.2
%CBR 95%MDS	1.97	10.9

7.1.22 Ensayo para determinar el CBR una muestra de suelo-NTP 339.145

ENSAYO: DETERMINACIÓN DEL CBR (CALIFORNIA BEARING RATIO VALOR SOPORTE DE CALIFORNIA) MEDIDO EN MUESTRAS COMPACTADAS EN LABORATORIO

AOPPS-CBR-002

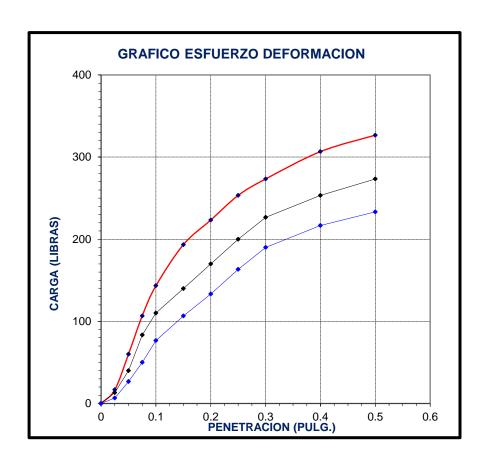
NORMA: NTP 339.145

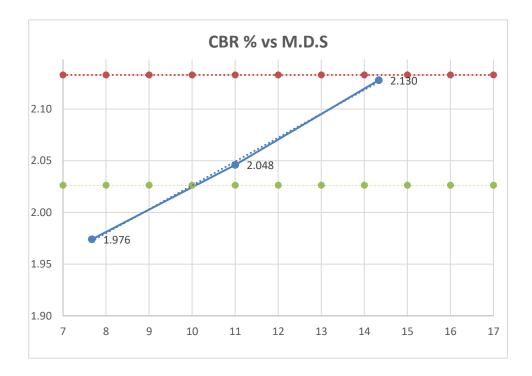
"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA


LUGAR DE: SANTA


APLICACIÓN: SUBRASANTE

DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2
5	50	· 17	4	40	13	3	20	7
6	180	60	5	120	40	4	80	27
6	320	107	5	250	83	5	150	50
7	430	143	6	330	110	5	230	77
8	580	193	7	420	140	6	320	107
9	670	223	8	510	170	6	400	133
11	760	253	10	600	200	7	490	163
13	820	273	11	680	227	8	570	190
15	920	307	13	760	253	10	650	217
17	980	327	15	820	273	11	700	233
MDS	2.135	gr/cm3	OCH 10.00 %					

RESULTADO		
%CBR 100%MDS	2.14	14.1
%CBR 95%MDS	2.03	9.8

7.1.23 Ensayo para determinar el CBR una muestra de suelo-NTP 339.145

UNS NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DEL CBR (CALIFORNIA BEARING RATIO VALOR SOPORTE DE CALIFORNIA) MEDIDO EN MUESTRAS COMPACTADAS EN LABORATORIO

AOPPS-CBR-003

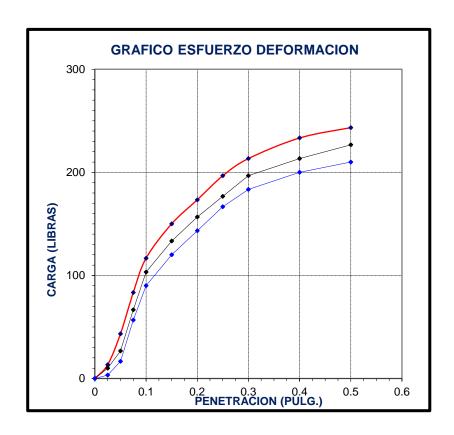
NORMA: NTP 339.145

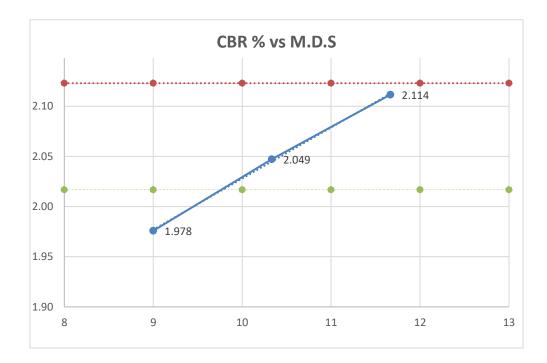
"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA


LUGAR DE: SANTA


APLICACIÓN: SUBRASANTE

DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2
5	40	. 13	4	30	10	3	10	3
6	130	43	5	80	27	4	50	17
6	250	83	5	200	67	5	170	57
7	350	117	6	310	103	5	270	90
8	450	150	7	400	133	6	360	120
9	520	173	8	470	157	6	430	143
11	590	197	10	530	177	7	500	167
13	640	213	11	590	197	8	550	183
15	700	233	13	640	213	10	600	200
17	730	243	15	680	227	11	630	210
MDS	2.125	gr/cm3	OCH 10.40 %					

RESULTADO		
%CBR 100%MDS	2.13	11.5
%CBR 95%MDS	2.02	9.5

7.1.24 Ensayo para determinar el CBR una muestra de suelo-NTP 339.145

ENSAYO: DETERMINACIÓN DEL CBR (CALIFORNIA BEARING RATIO VALOR SOPORTE DE CALIFORNIA) MEDIDO EN MUESTRAS COMPACTADAS EN LABORATORIO

AOPPS-CBR-004

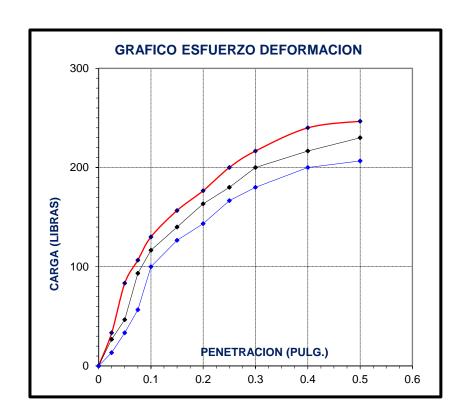
NORMA: NTP 339.145

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

SANTA"

UBICACIÓN: PUERTO SANTA


LUGAR DE: SANTA


APLICACIÓN: SUBRASANTE

DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2
5	100	. 33	4	80	27	3	40	13
6	250	83	5	140	47	4	100	33
6	320	107	5	280	93	5	170	57
7	390	130	6	350	117	5	300	100
8	470	157	7	420	140	6	380	127
9	530	177	8	490	163	6	430	143
11	600	200	10	540	180	7	500	167
13	650	217	11	600	200	8	540	180
15	720	240	13	650	217	10	600	200
17	740	247	15	690	230	11	620	207
MDS	2.025	gr/cm3	OCH 11.00 %]				

RESULTADO		
%CBR 100%MDS	2.14	14.1
%CBR 95%MDS	2.03	9.8

7.1.25 Ensayo para determinar el CBR una muestra de suelo-NTP 339.145

UNS NACIONAL DEL SANTA

ENSAYO: DETERMINACIÓN DEL CBR (CALIFORNIA BEARING RATIO VALOR SOPORTE DE CALIFORNIA) MEDIDO EN MUESTRAS COMPACTADAS EN LABORATORIO

AOPPS-CBR-005

NORMA: NTP 339.145

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL

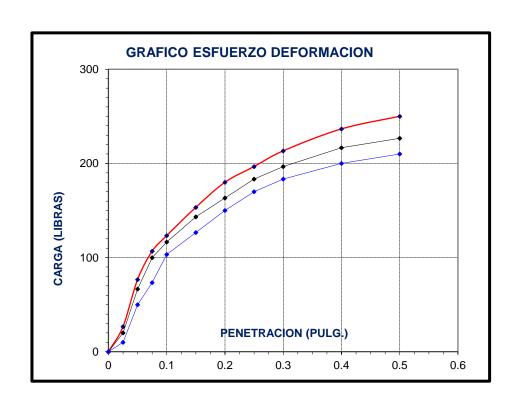
PROYECTO: TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO

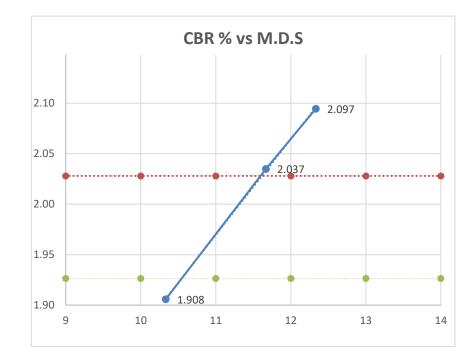
SANTA"

UBICACIÓN: PUERTO SANTA

LUGAR DE: SANTA

APLICACIÓN: SUBRASANTE


FECHA: 1/08/2022


DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2	DIAL	LBS	LBS/PUL2
5	80	. 27	4	60	27	3	30	13
6	230	77	5	200	47	4	150	33
6	320	107	5	300	93	5	220	57
7	370	123	6	350	117	5	310	100
8	460	153	7	430	140	6	380	127
9	540	180	8	490	163	6	450	143
11	590	197	10	550	180	7	510	167
13	640	213	11	590	200	8	550	180
15	710	237	13	650	217	10	600	200
17	750	250	15	680	230	11	630	207
MDS	2.030	gr/cm3	OCH 11.30 %					

RESULTADO

%CBR 100%MDS	2.03	11.6
%CBR 95%MDS	1.93	10.5

7.2 Anexo 02 – Estudio de tráfico – Conteo de vehículos

TRAMO DE LA CARRETERA			ESTACION	
SENTIDO	E -	s →	CODIGO DE LA ESTACION	A
UBICACIÓN			DIA Y FECHA	Lunes 14/03/22
DIA 1				·

	1			GTA TTO	CANDON	OWE A C			Drie		CANTON			CONTRACTOR A	XZ ED			IZEED A NZY YEE			
HORA	SENTIDO	Moto Carga	AUTO	N	CAMIONE	L	RURAL	MICRO	BUS	T	CAMION			SEMI TRA		I		TRAYLE		I	Τ
		Carga		WAGO	PICK UP	PANEL	RURAL Combi		2 E					2S1/2S2	2S3	3S1/3S2		2T2	2T3	3T2	>=3T3
DIAGRA	λ.			Jackson Jackson			-0-0			S SS.	~ ♣	~ ♣			~~ ₽ ₽	~~*∳	*** *** *			* * * * * *	A 88 8 88
VEH.		C. Lindy		1		- A - B	-0-0	-a		log II log.		00 0	000 0	-0 44	0.0.0 0 0		000 00 0				
00-01	E S										1										
	3										1										+
01-02	E	1	1		1																
	S	1										1									
02-03	E			1																	
	S														1						+
03-04	E	1	1		1																+
	S																				+
04-05	S	1	1	1	1	1													1		+
05-06	Б		1	,	1	İ										İ					†
03-00	S		1	1	1																+
06-07	E	1	1	1	İ					İ		1									
	S				1																
07-08	E	1	1	1			1														
	S				1																
08-09	E	1	1	1							1										
	S		1												1						
09-10	Е	1		1	1		1					1									
	S		1	1	1																+
10-11	S	1		1	1																+
11-12	F	1	1		1		1														
	S		1		1																
12-13	E	1	1	1	1						1								1		
	S		1	1	1		1														
13-14	E	1	1	1	1							1									
	S	1	1	1	1																
14-15	E		1	1	1	ļ	1														
	S	1	1	1	1																+
15-16	E		1	1	1		1				1										+
16-17	E	1	1	1			1														+
	S	1	1	1	1																
17-18	E	1	1	1			1														
	5	1	1	1	-	1			1	-							 			 	+
18-19	E	1	1	-		-															
	S	1	1	1	-	1	1		1	-	1	1					1	-		-	+
19-20	E	1	1	1		-	1		-				-				 		-	-	+
		i.					1														1
20-21	E	1	1	1	-	1			1	-			-				1	-		1	+
21-22	E	1				1	1														†
	S	1																			
22-23	E	1					1				1										1
	S	1		+	-				1											-	+
23-24	E	1										1									
	S	1																			
PARCIA	AL:	30	29	27	22	0	12	0	0	0	6	6	0	0	2	0	0	0	2	0	0

FORMATO DE CLASIFICACION VEHICULAR

ESTUDIO DE TRAFICO

TRAMO DE LA CARRETERA		
SENTIDO	E -	s
UBICACIÓN		
DIA 2		

ESTACION	
CODIGO DE LA ESTACION	A
DIA Y FECHA	Martes 15/03/22

	an man		I	COTTA OTTORY	CAMIONETAS				BUS		CAMION			SEMI TRAYLE	t			TRAYLER			$\overline{}$
HORA	SENTIDO	Moto Carga	AUTO			PANEL	RURAL Combi	MICRO	2 E	>=3 E		3 E	4 E	2S1/2S2		3S1/3S2	>= 3S3		2T3	3T2	>=3T3
DIAGRA VEH.							0-0	(all a		الوجا الوجا	~_ \	~ [<u></u> -	, , , , , , , , , , , , , , , , , , , 	***		*** ***	· · · · · · · · · ·			** ** **
00-01	E																		1		
	S										1										
01.02	E		,																		
01-02	S		1		1							1									
02-03	Е			1																	
	S																				
03-04	E		1		1																
	S																				
04-05	E		1	1	1																
	S																				
05-06	E		1	1	1																
	S																				
06-07	E	1	1	1								1									
	S				1																
07-08	E	1	1	1	1		1										1				
	_				1																
08-09	E	1	1	1							1			-							\leftarrow
00.10	5	4	1									1									
09-10	E	1	1	1	1		1					1									
10-11	E	1	1	1	1																
	S	1		1	1																
11-12	E	1	1		1		1								1						
	S		1		1																
12-13	E	1	1	1	1						1								1		
		1	1	1	1																
13-14	E	1	1	1	1							1									
	S	1	1	1	1						1										
14-15	E	1	1	1	1				-									-			
	-																				
15-16	S	1	1	1	1						1										
16-17	E	1	1	1	-		1														
	S	1	1	1	1																
17-18	E	1	1	1			1														
	S	1	1	1																	\vdash
18-19	E	1																			\longrightarrow
	S	1					1				1	1									\vdash
19-20	E	1															ļ	ļ			↓
-	2	1													 			1			\vdash
20-21	E	1	1		_																
21-22	S E	1			1										-			-			-
21-22	S	1			1													1			\vdash
22-23	E	1			-						1										
	S	1			1																
23-24	E							L							1	L				L	
	s																				
PARCIA	L:	30	26	22	25	0	6	0	0	0	7	5	0	0	2	0	0	0	2	0	0

TRAMO DE LA CARRETERA			ESTACION	
SENTIDO	€-	S	CODIGO DE LA ESTACION	A
UBICACIÓN			DIA Y FECHA	Miercoles 16/03/22
DIA 3				

						CAMIONETA			- п	US		CAMION			SEMI T	RAYLER		1	TDA	YLER	
HORA	SENTIDO	Moto Carga	AUTO	STATION WAGON	PICK UP		RURAL	MICRO	2 E	>=3 E	2 E	3 E	4 E	2S1/2S2	2S3	3S1/3S2	>= 383	2T2	2T3	3T2	>=3T3
DIAGRA		./6 [™] 0↓.					Combi						-							-	
VEH.	-					= 0	-0-0			8 88.	, 	~ ♣	<u></u> -		200 2 A		~~~ ♣		****	0 00 0	*****
00-01	E																		1		
	S										1										
01-02	E S		1		1				1			1				-					
02-03	E			1								1									
02-03	S			1					1												1
03-04	E		1		1																
05 04	S																				
04-05	Е		1	1	1																
0.7 0.5	S		•	·	1																
05-06	Е		1	1	1																
	S																				
06-07	Е	1	1	1								1									
	S				1																
07-08	E	1	1	1			1														
	S	1			1				+							-					
08-09	E	1	1	1							1										
	S		1						1												
09-10	E	1		1	1		1					1									
	S	1	1	1	1																
10-11	E S	1		1	1												1				
11-12	E	1	1	<u> </u>	1		1								1						
11-12	S	1	1		1		1								1						
12-13	Е	1	1	1	1						1								1		
	S	1		1	1																
13-14	E	1		1	1																
	s	1	1	1	1																
14-15	Е	1	1	1	1																
	S	1	1		1																
15-16	E	1	1	1	1																
16.15	S	1	1	1	1				1							-					-
16-17	E S	1	1	1	1		1		+											1	
17-18	E	1	1	1			1														
17-10	S	l l	i	1			1														
18-19	Е	1																			
	s	1									1	1									
19-20	Е	1																			
	S	1		1																	
20-21	E	1	1	1		<u> </u>			<u> </u>				L	<u> </u>		<u> </u>			<u></u>	<u></u>	
	S	1			1																
21-22	E	1		L .					-												
22-23	S E	1		1	1						1										
	S															<u> </u>					
23-24	E				1										1						
23-24					1	 			 						1	 					
PARCIA	S L:	28	24	25	25	0	5	0	0	0	5	4	0	0	2	0	0	0	2	0	0
													·	 				 			

RAMO DE LA CARRETERA				ESTACION	
ENTIDO	€-	S	CODIGO	DE LA ESTACION	Α
BICACIÓN				DIA Y FECHA	Jueves 17/03/22
IA 4					

						CAMIONETA	S		В	US		CAMION			SEMI T	RAYLER			TRA	YLER	
HORA	SENTIDO	Moto Carga	AUTO	STATION WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	>=3 E	2 E	3 E	4 E	2S1/2S2	283	3S1/3S2	>= 3S3	2T2	2T3	3T2	>=3T3
DIAGRA VEH.	•						Combi			lour lour	~ -₽	~~ 	<u></u>		200 € 		~~ ~		··· • • •	· · · · ·	*****
00-01	E																		1		
	S										1										
01-02	Е		1		1																
	S											1									
02-03	E			1																	
	S																				
03-04	E S		1		1																
04-05	E		1	1	1																\vdash
0.7 0.5	S		•	•	•																
05-06	E		1	1	1																
	S																				
06-07	E	1	1	1	1							1									
	S				1																
07-08	E S	1	1	1	1		1														
08-09	E	1	1	1							1										
08-02	S	1	i								·										
09-10	Е	1		1	1		1														
	S	1	1	1	1																
10-11	E	1		1																	
	S	1		1	1		1														_
11-12	E S	1	1		1		1								1						
12-13	E	1	1	1	1						1										
	S	1		1	1																
13-14	E	1		1	1																
	S	1	1	1	1																
14-15	E S	1	1	1	1			_													
15-16	E	1	1	1	1																
15-16	S	1	1	1	1																
16-17	E	1	1	1			1														
	S	1	1	1	1																\vdash
17-18	E S	1 1	1	1			1	1									1				
18-19	E	1																			
13-17	S	1									1	1									
19-20	Е	1																			
	S	1					1														
20-21	E	1	1																		
21.22	S	1			1			-													\vdash
21-22	E S	1	1		1			 													\vdash
22-23	E	1	•		•																
	S	1																			\Box
23-24	E	1			1																
	S														1						
PARCIA	L:	33	25	21	25	0	6	0	0	0	4	3	0	0	2	0	0	0	1	0	0

TRAMO DE LA CARRETERA		
SENTIDO	-	s
UBICACIÓN		
DIA 5		

	ESTACION	
CODIGO	D DE LA ESTACION	A
	DIA Y FECHA	Viernes 18/03/22

100					T		CAMIONETA	AS		В	US		CAMION			SEMI T	RAYLER			TRA	YLER	
Description Property Proper	HORA	SENTIDO	Moto Carga	AUTO	WAGON	PICK UP		RURAL	MICRO			2 E		4 E	2S1/2S2			>= 3S3	2T2			>=3T3
100	DIAGRA.	-									10 60							+				
S					_	_					low low.	1	1		-2 -2	+		1				ļ
1	00-01											1								1		
S												•										
1	01-02	E		1		1																
S		S											1									
No. No.	02-03				1																	
S																						
Mart Mart	03-04			1		1																<u> </u>
S		S																				ļ!
15.50	04-05			1	1	1																
S		S																				ļ!
10	05-06			1	1	1																
S		S				-		1	ļ		1				ļ	1	1					
17.00	06-07		1	1	1	L							1									
S						1		1								1						
Section Sect	07-08	E		1	1			1														
S						1																
19-10 E	08-09				1							1										
S				1																		
19-11	09-10				•			1	1							1						
S				1	1	1																
11-12 E	10-11				1																	
S	11.12			1		1		١.								٠,						
12-13	11-12		1	1				1								1						-
S	12-13		1		1							1										
S					1																	
S	13-14	Е	1		1	1																
Hart Fe			1	1	1	1																
S	14-15					1																
S																						
S	15-16	Е	1	1	1	1																
S			1	1	1	1																
17-18	16-17				1			1														
18-19 E			1	1	1	1		 				 		—	ļ	 	1	1	-	1		
18-19 E	17-18	E	1	1				1				1										
S			-	- 1	1													1			1	
19-20 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18-19				1				<u> </u>			-			-				-			
S 1												1	1								ļ	
20-21 E 1 1 1 1	19-20				1						-		1									
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1					1								<u> </u>	
21-22 E 1 1 1 1	20-21			1	1						-	<u> </u>										
S 1 1 1 1	21-22				1	1		<u> </u>		<u> </u>	<u> </u>	1				1			 		 	\vdash
22-23 E	21-22		1	1	1	1					1	1										
S 1 1 23-24 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22-23					<u> </u>																
23-24 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S				1																
S S	23-24	Е				1										1						
PARCIAL: 27 25 25 26 0 6 0 0 0 0 4 4 0 0 2 0 0 0 1 0 0																						
	PARCIA	L:	27	25	25	26	0	6	0	0	0	4	4	0	0	2	0	0	0	1	0	0

TRAMO DE LA CARRETERA			
SENTIDO		€-	s
UBICACIÓN			
DIA 6	•		

ESTACION	
CODIGO DE LA ESTACION	A
DIA Y FECHA	Sabado 19/03/22

				STATION		CAMIONETA	e		BUS			CAMION			SEMI TRAYLER				TRAYLER			
HORA	SENTIDO	Moto Carga	AUTO	STATION WAGON			RURAL	MICRO	2 E	>=3 E	2 E	3 E	4 E	2S1/2S2	283	3S1/3S2	>= 383	2T2	2T3	3T2	>=3T3	
DIAGRA VEH.				1			Combi				~ 					ļ						
00-01	E																		1			
	S										1											
01-02	E S		1		1			1				1										
00.00												1										
02-03	E S			1																		
03-04	E		1		1																	
03-04	S		1		1			1						+								
04-05	E		1	1	1																	
04-03	S		1	1	1																	
05-06	E		1	1	1																	
0.5-00	S		1	1	1			<u> </u>	<u> </u>						1		1					
06-07	E	1	1	1								1										
03-07	S	1	1	1	1							1										
07-08	Е	1	1	1			1															
	S	1			1																	
08-09	E	1	1	1							1									1		
	S	1	1																			
09-10	E	1		1	1		1															
	S	1	1	1	1																	
10-11	E	1																				
	S	1		1	1			-	-					-	-	-						
11-12	E	1	1		1		1								1							
10.10	S E	1	1	1	1																	
12-13	S	1	1	1	1						1											
13-14	E	1		1	1																	
13-14	S	1	1	1	1																	
14-15	E	1	1	1	1				1					+	+		1					
14-13	S	1	1	-	1																	
15-16	Е	1	1	1	1																	
13-10	S	1	1	1	1																	
16-17	E	1	1	1			1															
	S	1	1	1	1			1						1			1		-			
17-18	E	1	1	1			1															
	S	1	1	1				+						1	+					\vdash		
18-19	E			1													ļ					
	S			1				1	1		1	1								<u> </u>	-	
19-20	E	1		1				1	<u> </u>		<u> </u>		ļ		1	ļ	ļ			ļ	1	
	S	1		1		-		+	 		1	1			 		 		-		 	
20-21	E	1	1	1					ļ								ļ			<u> </u>		
21.22	S E	1		1				+	1			1		1	+		1		-	\leftarrow		
21-22	S	1	1	1				1	 						1							
22-23	E	1	1	1											,							
	S	1		1																		
23-24	Е		1	1											1							
	S		-																			
PARCIA		29	26	32	22	0	5	0	0	0	5	5	0	0	3	0	0	0	1	0	0	
																•						

TRAMO DE LA CARRETERA		
SENTIDO	E -	s →
UBICACIÓN		
DIA 7		

ESTACION	
CODIGO DE LA ESTACION	A
DIA Y FECHA	Domingo 20/03/22

	ansumra a	hr		OT 1 TTO 1	CAMIONETAS				BUS		CAMION			SEMI TRAYLER				TRAYLER				
HORA	SENTIDO	Moto Carga	AUTO	STATION WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	>=3 E		3 E	4 E	2S1/2S2	2S3	3S1/3S2	>= 383	2T2	2T3	3T2	>=3T3	
DIAGRA VEH.						A A	-0-0			8 88.				, , , , , , , , , , , , , , , , , , , 		, ,, ,,	~~ ~ ♣	4	··· · · · ·	*****	******	
	E																		1			
	S										1											
01-02	_				,																	
01-02	S		1		1							1									+	
02-03	E			1																		
	S																					
03-04	E		1		1																	
	S																					
04-05	E		1	1	1																	
05.05	5																				+	
05-06	S		1	1	1																+	
06-07	Е	1	1	1								1										
	S				1																	
07-08	E	1	1	1			1														↓	
	S	1			1																+	
08-09	E	1	1	1							1											
00.10	5	1	1	,	1		,														+	
09-10	E S	1	1	1	1		1														+	
10-11	E	1																			 	
	S	1		1	I																	
11-12	E	1	1		1		1								1							
10.10	S		1		1																+	
12-13	S	1	1	1	1						1										+	
13-14	F	1		1	1																	
10 11	s	1	1	1	1																	
14-15	E	1	1	1	1																	
	S	1	1	1	1																	
15-16	E	1	1	1	1																↓	
16-17	S E	1	1	1	1		1														+	
1.5-17	S	1	1	1	1																	
17-18	Е	1	1	1			1															
	S	1	1	1																		
18-19	E	1	1	1			1														\vdash	
	S		1	1			-		<u> </u>		1	1	-		1		1	-			+	
19-20	E		1	1			-		<u> </u>		1	1	-		-						+	
20.21	E			,					f e			•									†	
20-21	S		1	1							1	1									+	
21-22	E			1							-	1										
	S		1	1											1							
22-23	E			1									-						1		+	
			_	1					 										1		+	
23-24	E		1	1			1						-		1.			-			+	
PARCIA	L:	23	29	34	22	0	6	0	0	0	6	6	0	0	3	0	0	0	2	0	0	
ANCIA	LL.	143		J-\$		10	Į u	10	10	10		v	10	10	1-5	Į v	10	Įv.	-	10	10	

7.3 Anexo 03 – Estudio de tráfico – Pavimento Flexible

(E) UNS	ESTUDIO DE TRAFICO				
NACIONAL DEL SANTA	Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección	EDT-001			
	Suelos y				
	Pavimentos				

1. Conteo vehicular y cálculo de IMD

N.º	Tipo de Vehículo	IMD	C1	C2	C3	C4	C5	C6	C7
1	Motokar/Moto/Moto carga	29	30	30	28	33	27	29	23
2	Automóvil	26	29	26	24	25	25	26	29
3	Station Wagon	27	27	22	25	21	25	32	34
4	Camioneta Pick Up	24	22	25	25	25	26	22	22
5	Combi	7	12	6	5	6	6	5	6
6	Camión (2E)	5	6	7	5	4	4	5	6
7	Camión (3E)	5	6	5	4	3	4	5	6
8	Semi tráiler ≥3s3	2	2	2	2	2	2	3	3
9	Tráiler > 3E	2	2	2	2	1	1	1	2
8		•	<u> </u>			<u> </u>		•	

2. Determinación del Factor de Crecimiento Acumulado (Fca)

El valor del Fca se obtuvo en base al Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos.

$$FCA = \frac{(1+r)^Y - 1}{r}$$

r = 2.00% Tasa de crecimiento Y = 20 Periodo de diseño FCA = 24.30 Factor de crecimiento

3.Determinación del Factor Direccional (Fd) y Factor Carril (Fc)

El valor del Fd y Fc se obtuvo en base al Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos (Cuadro 6.1 "Factores de Distribución Direccional y de Carril para determinar el Tránsito en el Carril de Diseño"

Fd=0.5

Fc=0.8

4.Determinación del factor de presión neumática (Fp)

Al no realizar aún el diseño de los pavimentos, se asumió el valor de 1 para los distintos tipos de pavimentos.

Fp=1

5. Calculo de los EE día-carril

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos el EE día-carril, se calcula mediante la siguiente expresión:

$$EDIA-CARRIL = IMD * Fd * Fc * Fvp * F$$

Nº	Tipo de Vehículo	IMD	Fd	Fc	Fpvp	Fp	EE día-carril
1	Motokar/Moto/Moto carga	29	0.5	0.8	0.0001	1	0.0011
2	Automóvil	26	0.5	0.8	0.0004	1	0.0042
3	Station Wagon	27	0.5	0.8	0.0004	1	0.0043
4	Camioneta Pick Up	24	0.5	0.8	0.005	1	0.0477
5	Combi	7	0.5	0.8	0.042	1	0.1104
6	Camión (2E)	5	0.5	0.8	3.477	1	7.3514
7	Camión (3E)	5	0.5	0.8	2.526	1	4.7633
8	Semi tráiler ≥3s3	2	0.5	0.8	3.758	1	3.4359
9	tráiler > 3E	2	0.5	0.8	3.758	1	2.3622

6. Cálculo del ESAL de diseño

 $Esal = \sum [EEDIA - CARRIL * FCA * 365]$

	Tipo de Vehículo						
Nº		EE día-carril	Días	Fca	Esal		
1	Motokar/Moto/Moto carga	0.00114	365	24.30	10.135		
2	Automóvil	0.00421	365	24.30	37.299		
3	Station Wagon	0.00425	365	24.30	37.704		
4	Camioneta Pick Up	0.04771	365	24.30	423.156		
5	Combi	0.11040	365	24.30	979.087		
6	Camión (2E)	7.35137	365	24.30	65195.931		
7	Camión (3E)	4.76331	365	24.30	42243.643		
8	Semi tráiler ≥3s3	3.43589	365	24.30	30471.290		
9	Tráiler > 3E	2.36217	365	24.30	20949.012		
	Total						

7.4 Anexo 04 – Estudio de tráfico – Pavimento Rígido

UNS	ESTUDIO DE TRAFICO	AOPPS- EDT-002
NACIONAL DEL SANTA	Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - Sección	ED1-002
	Suelos y	
	Pavimentos	

1. Conteo vehicular y cálculo de IMD

Nº	Tipo de Vehículo	IMD	C1	C2	C3	C4	C5	C6	C7
1	Motokar/Moto/Moto carga	29	30	30	28	33	27	29	23
2	Automóvil	26	29	26	24	25	25	26	29
3	Station Wagon	27	27	22	25	21	25	32	34
4	Camioneta Pick Up	24	22	25	25	25	26	22	22
5	Combi	7	12	6	5	6	6	5	6
6	Camión (2E)	5	6	7	5	4	4	5	6
7	Camión (3E)	5	6	5	4	3	4	5	6
8	Semi tráiler ≥3s3	2	2	2	2	2	2	3	3
9	Tráiler > 3E	2	2	2	2	1	1	1	2

2. Determinación del Factor de Crecimiento Acumulado (Fca)

El valor del Fca se obtuvo en base al Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos.

 $FCA = \frac{(1+r)^Y - 1}{r}$

r = 2.00% Tasa de crecimiento Y = 20 Periodo de diseño FCA = 24.30 Factor de crecimiento

3.Determinación del Factor Direccional (Fd) y Factor Carril (Fc)

El valor del Fd y Fc se obtuvo en base al Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos (Cuadro 6.1 "Factores de Distribución Direccional y de Carril para determinar el Tránsito en el Carril de Diseño"

Fd=0.5

Fc=0.8

4.Determinación del factor de presión neumática (Fp)

Al no realizar aún el diseño de los pavimentos, se asumió el valor de 1 para los distintos tipos de pavimentos.

Fp=1

5. Calculo de los EE día-carril

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos el EE día-carril, se calcula mediante la siguiente expresión:

$$EDIA-CARRIL = IMD * Fd * Fc * Fvp * F$$

Nº	Tipo de Vehículo	IMD	Fd	Fc	Fpvp	Fp	EE día-carril
1	Motokar/Moto/Moto carga	29	0.5	0.8	0.0001	1	0.0011
2	Automóvil	26	0.5	0.8	0.0002	1	0.0021
3	Station Wagon	27	0.5	0.8	0.0002	1	0.0021
4	Camioneta Pick Up	24	0.5	0.8	0.005	1	0.0477
5	Combi	7	0.5	0.8	0.038	1	0.0999
6	Camión (2E)	5	0.5	0.8	3.529	1	7.4613
7	Camión (3E)	5	0.5	0.8	3.407	1	6.4246
8	Semi tráiler ≥3s3	2	0.5	0.8	6.391	1	5.8432
9	tráiler > 3E	2	0.5	0.8	6.391	1	4.0172

6. Cálculo del ESAL de diseño

$Esal = \sum [EEDIA - CARRIL * FCA * 365]$

	Tipo de Vehículo						
Nº	-	EE día-carril	Días	Fca	Esal		
1	Motokar/Moto/Moto carga	0.00114	365	24.30	10.135		
2	Automóvil	0.00210	365	24.30	18.649		
3	Station Wagon	0.00213	365	24.30	18.852		
4	Camioneta Pick Up	0.04771	365	24.30	423.156		
5	Combi	0.09989	365	24.30	885.840		
6	Camión (2E)	7.46131	365	24.30	66170.964		
7	Camión (3E)	6.42463	365	24.30	56977.075		
8	Semi tráiler ≥3s3	5.84320	365	24.30	51820.653		
9	Tráiler > 3E	4.01720	365	24.30	35626.699		
	Total						

7.3 Anexo 05– Diseño de la estructura del Pavimento flexible

Parámetros de diseño

1.ESAL de diseño (W18)

W18= 160,347.26

Según el Manual de Carreteras (Cuadro 12.1), la vía en estudio está clasificada como TP1

2. Módulo de resiliencia (*Mr*)

El módulo de residencia se obtiene mediante la siguiente expresión: $Mr (psi) = 2555xCBR^{(0.64)}$

$$Mr(psi) = 11188.637$$

3.Confiabilidad (%R)

Según el Manual de Carreteras (Cuadro 12.6), la vía en estudio está clasificada como TP1 y la confiabilidad es 70%

$$(\%\mathbf{R}) = 70$$

4. Coeficiente Estadístico de Desviación Estándar Normal (Zr)

Según el Manual de Carreteras (Cuadro 12.8), la vía en estudio está clasificada como TP1 y el ZR es:

$$(Zr) = -0.524$$

5.Desviación estándar Combinada (So)

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, este indicador considera las posibles variaciones entre los demás factores de diseño, como el tránsito o procedimientos constructivos, su valor oscila entre 0.40 y 0.50. Para la presente investigación el valor tomado fue:

$$(So) = 0.45$$

6.Índice de serviciabilidad Presente (PSI):

Serviciabilidad Inicial (Pi)

Según el Manual de Carreteras (Cuadro 12.10), la vía en estudio está clasificada como TP1 y el Pi es:

$$Pi = 3.8$$

Serviciabilidad final (Pt)

Según el Manual de Carreteras (Cuadro 12.11), la vía en estudio está clasificada como TP1 y el Pt es:

$$Pt= 2$$

Diferencial de Serviciabilidad (ΔPSI)

Se calcula mediante la siguiente expresión:

$$(\Delta PSI)$$
= Pi-Pt= 1.8

7. Número Estructural (SN)

Datos de diseño para pavimento flexible

$$W18 = 160,347.26$$

$$Mr (psi) = 11.19$$

$$(\%R) = 70.00\%$$

$$(Zr) = -0.524$$

$$(So) = 0.45$$

$$(\Delta PSI) = 1.8$$

El SN se calcula mediante la siguiente expresión:

$$\label{eq:log_W18} Log\left(W18\right) = ZR \; x \; SO \; + \; 9.36 \; x \; Log(SN \; + \; 1) - 0.2 \; \frac{Log\frac{\Delta PSI}{(4.2 \; - 1.5)}}{0.40 \; + \frac{1094}{(SN \; - 1)^{5.19}}} + 2.32 x \; Log(MR) - \; 8.07$$

8. Determinación del espesor de las capas estructurales del pavimento flexible

Según el Manual de Carreteras (Cuadro 12.13), se obtienes los valores del coeficiente estructural a1, a2, a3

Capa Superficial a1 0.170
Base a2 0.05
Sub base a3 0.05
Drenaje-base m2 1
Drenaje-sub base m3 1

ALTERNATIVA	CA	Bg	Sbg	SNreq	SNresul	
ALIEMVAIIVA	D1(cm)	D2(cm)	D3(cm)	Sivieq	Siviesui	
1	7.62	12.7	5.08	1.92	2.19	
2	5.08	12.7	10.2	1.92	2.00	

7.4 Anexo 06 – Diseño de la estructura del Pavimento rígido

UNS MACIONAL DILI SANTA	DISEÑO DE PAVIMENTO RÍGIDO	AOPPS- DPR-001
	MÉTODO AASHTO - 93	

1. ESAL de diseño (W18)

W18= 211,952.02

Según el Manual de Carreteras (Cuadro 14.1), la vía en estudio está clasificada como TP1

2. Confiabilidad (%R)

Según el Manual de Carreteras (Cuadro 14.5), la vía en estudio está clasificada como TP1 y la confiabilidad es 70%

$$(\% R) = 70$$
 %

3. Coeficiente Estadístico de Desviación Estándar Normal (Zr)

Según el Manual de Carreteras (Cuadro 14.1), la vía en estudio está clasificada como TP1 y el ZR es:

$$(Zr) = -0.524$$

4. Desviación estándar Combinada (So)

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, este indicador considera las posibles variaciones entre los demás factores de diseño, como el tránsito o procedimientos constructivos, su valor oscila entre 0.40 y 0.50. Para la presente investigación el valor tomado fue:

$$(So) = 0.35$$

5. Índice de serviciabilidad Presente (PSI):

Serviciabilidad Inicial (Pi)

Según el Manual de Carreteras (Cuadro 14.4), la vía en estudio está clasificada como TP1 y el Pi es:

Serviciabilidad final (Pt)

Según el Manual de Carreteras (Cuadro 14.4), la vía en estudio está clasificada como TP1 y el Pt es:

$$Pt = 2$$

Diferencial de Serviciabilidad (ΔPSI)

Se calcula mediante la siguiente expresión:

$$(\Delta PSI) = Pi-Pt=$$
 2.1

6. Módulo de reacción de la subrasante (Kc)

Según el Manual de Carreteras (Figura 14.1), el Kc es

Kc= 55 Mpa/m Kc= 202.634 PSI

7. Resistencia al flexo tracción del concreto (MR)

Según el Manual de Carreteras (Cuadro 14.7), La resistencia al flexo tracción del concreto es

Mr= 40 Kg/cm2 Mr= 568.944 PSI

8. Módulo de elasticidad del concreto (Ec)

El Ec se determina mediante la siguiente expresión:

$$Ec = 57,000x (f'c)^{0.5}$$

El (f'c) según el cuadro 14.7 es 280 kg/cm2

(f ' c) =	280	kg/cm2
(f ' c) =	3,982.61	PSI
Ec=	3597150.3	PSI

9. Coeficiente de drenaje (Cd)

Este valor varía entre 0.75 y 1.25, siendo el valor más elevado el que representa un mejor drenaje.

Según el Manual de Carreteras (Cuadro 14.9), el coeficiente de drenaje es

Cd=1

10. Coeficiente de transferencia de cargas (J)

Según el Manual de Carreteras (Cuadro 14.9), Coeficiente de transferencia de cargas es

J=2.8

11. Espesor de la Losa (D)

Datos de diseño para pavimento flexible

$$\mathbf{W18} = 211,952.02$$

$$(\%\mathbf{R}) = 70.00\%$$

$$(\mathbf{Zr}) = -0.524$$

$$(\mathbf{So}) = 0.35$$

$$\mathbf{Pi} = 4.1$$

$$\mathbf{Pt} = 2$$

$$(\Delta \mathbf{PSI}) = 2.1$$

$$\mathbf{Kc} = 202.63366$$

$$\mathbf{PSI}$$

$$\mathbf{Mr} = 568.944$$

$$\mathbf{PSI}$$

$$\mathbf{Ec} = 3597150.3$$

$$\mathbf{PSI}$$

$$\mathbf{Cd} = 1$$

$$\mathbf{J} = 2.8$$

El D se calcula mediante la siguiente expresión

$$Log_{10}W_{82} = Z_{R}S_{O} + 7.35Log_{10}(D + 25.4) - 10.39 + \frac{Log_{10}\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D + 25.4)^{8.46}}} + \left(4.22 - 0.32P_{t}\right) \times Log_{10}\left(\frac{M_{r}C_{dx}\left(0.09D^{0.75} - 1.132\right)}{1.51 \times J\left(0.09D^{0.75} - \frac{7.38}{\left(E_{c}/k\right)^{0.25}}\right)}\right)$$

D= 10.00 **BG**= 15.00

Para la base granular del pavimento rígido se siguió la recomendación del Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, en la cual se establece como 15 cm el espesor mínimo de dicha capa.

7.5 Anexo 07 – Diseño de la estructura del Pavimento articulado

Parámetros de diseño

1.ESAL de diseño (W18)

Según el Manual de Carreteras (Cuadro 12.1), la vía en estudio está clasificada como TP1

2. Módulo de resiliencia (*Mr*)

El módulo de resiliencia se obtiene mediante la siguiente expresión: $Mr(psi) = 2555xCBR^{(0.64)}$

$$Mr(psi) = 11188.637$$

3.Confiabilidad (%R)

Según el Manual de Carreteras (Cuadro 12.6), la vía en estudio está clasificada como TP1 y la confiabilidad es 70%

$$(\%\mathbf{R}) = 70$$

4. Coeficiente Estadístico de Desviación Estándar Normal (Zr)

Según el Manual de Carreteras (Cuadro 12.8), la vía en estudio está clasificada como TP1 y el ZR es:

$$(Zr) = -0.524$$

5.Desviación estándar Combinada (So)

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, este indicador considera las posibles variaciones entre los demás factores de diseño, como el tránsito o procedimientos constructivos, su valor oscila entre 0.40 y 0.50. Para la presente investigación el valor tomado fue:

$$(So) = 0.45$$

6.Índice de serviciabilidad Presente (PSI):

Serviciabilidad Inicial (Pi)

Según el Manual de Carreteras (Cuadro 12.10), la vía en estudio está clasificada como TP1 y el Pi es:

$$Pi = 3.8$$

Serviciabilidad final (Pt)

Según el Manual de Carreteras (Cuadro 12.11), la vía en estudio está clasificada como TP1 y el Pt es:

$$Pt= 2$$

Diferencial de Serviciabilidad (ΔPSI)

Se calcula mediante la siguiente expresión:

$$(\Delta PSI)$$
= Pi-Pt= 1.8

7. Número Estructural (SN)

Datos de diseño para pavimento flexible

$$W18 = 160,347.26$$

$$Mr (psi) = 11.19$$

$$(\%R) = 70.00\%$$

$$(Zr) = -0.524$$

$$(So) = 0.45$$

$$(\Delta PSI) = 1.8$$

El SN se calcula mediante la siguiente expresión:

$$\label{eq:log_W18} Log\left(W18\right) = ZR \; x \; SO \; + \; 9.36 \; x \; Log(SN \; + \; 1) - 0.2 \; \frac{Log\frac{\Delta PSI}{(4.2 \; - 1.5)}}{0.40 \; + \frac{1094}{(SN \; - 1)^{5.19}}} + 2.32 x \; Log(MR) - \; 8.07$$

8. Determinación del espesor de las capas estructurales del pavimento flexible

Según el Manual de Carreteras (Cuadro 12.13), se obtienes los valores del coeficiente estructural a1, a2, a3

Capa Superficiala10.170Basea20.05Sub basea30.05Drenaje-basem21Drenaje-sub basem31

ALTERNATIVA	CA	Bg	Sbg	SNreq	SNresul	
ALIEMNATIVA	D1(cm)	D2(cm)	D3(cm)	Sivieq	Siviesui	
1	6.00	17.8		1.92	1.94	
2	8.00	12.7		1.92	2.02	

7.6 Anexo 08 – Presupuesto del Pavimento flexible

	PAVIMENTO FLEXIBLE				
NACIONAL DEL SANTA	PRESUPUESTO				AOPPS-PP-001
	"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PA SANTA"	NAMERICANA NORTE	KM 443 HAST.	A PUERTO	
Ítem	Descripción	Und	Metrado	Precio S/.	Parcial S/.
1.00	Obras Provisionales				S/18,080.00
1.01	Cartel de obra de 6.00 X 3.00	glb	1	S/1,500.00	S/1,500.00
1.02	Topografía y georreferenciación	Km	4.917	S/1,331.00	S/6,544.53
1.03	Mantenimiento de tránsito temporal y seguridad vial	glb	1	S/10,035.47	S/10,035.47
2.00	Trabajos preliminares				S/6,544.53
2.01	Trazo y replanteo durante el proceso	Km	4.917	S/1,331.00	S/6,544.53
3.00	Movimientos de tierras				S/266,560.21 S/133,280.11
3.01	Excavación manual en terreno semi compactado	m3	7292.33	8.81	S/64,245.43
3.02	Preparación de subrasante c/motoniveladora	m2	29502	2.34	S/69,034.68
4.00	Afirmados				S/1,356,563.61
4.01	Sub Base granular de afirmado h=0.10m	m3	6059.33	33.58	S/203,492.50
4.02	Base granular de afirmado h=0.127m	m3	6059.33	190.30	S/1,153,071.11

5.00	Eliminación de material excedente				S/51,259.82
5.01	Acarreo de material excedente hasta una distancia promedio de 30 m	m3	1232.8	23.62	S/29,118.74
5.02	Eliminación de material excedente proveniente de corte y excavaciones	m3	1232.8	17.96	S/22,141.09
6.00	Pavimento flexible				S/1,859,894.59
6.01	Imprimación asfáltica	m2	29502	4.25	S/125,383.50
6.02	Transporte de imprimación	m3	2950.2	101.33	S/298,943.77
6.03	Carpeta Asfáltica En Caliente de 2"	m2	29502	48.66	S/1,435,567.32
7.00	Señalización en pintura				S/39,520.39
7.01	Pintura en pavimentos	m2	1229.25	32.15	\$/39,520.39
	COSTO DIRECTO				S/3,598,423.14
	GASTOS GENERALES (10.00%)				S/359,842.31
	UTILIDAD (5.00%)				S/179,921.16
	SUB TOTAL				S/4,138,186.62
	IGV (18.00%)				S/744,873.59
	PRESUPUESTO TOTAL				S/4,883,060.21
	SUPERVISIÓN (1.5%)				S/73,245.90
	COSTO DE INVERSIÓN				S/4,956,306.11

COST	OS DE MANTENIMIENTO RUTINARIO						
Part	ACTIVIDADES		UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento						21,946.76
1.01	Imprimación asfáltica		m2	295.02	5.02	1,479.53	
1.02	Transporte de imprimación		m3	29.50	119.57	3,527.54	
1.03	Carpeta Asfáltica En Caliente de 2"		m2	295.02	57.42	16,939.69	
Costo	total						21,946.76
COST	OS DE MANTENIMIENTO PERIÓDICO						
Part	ACTIVIDADES		UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento						53,907.64
1.01	Imprimación asfáltica		m2	1180.08	5.02	5,918.10	
1.02	Transporte de imprimación		m3	118.01	119.57	14,110.15	
1.03	Carpeta Asfáltica En Caliente de 2"		m2	590.04	57.42	33,879.39	
		Costo total					53,907.64

7.7 Anexo 09 – Presupuesto del Pavimento rígido

a uns	PAVIMENTO RÍGIDO				AOPPS-PP-002					
NACIONAL DEL SANTA	PRESUPUESTO				AUPPS-PP-002					
	"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"									
Ítem	Descripción	Und	Metrado	Precio S/.	Parcial S/.					
1.00	Obras Provisionales				S/18,080.00					
1.01	Cartel de obra de 6.00 X 3.00	glb	1	S/1,500.00	S/1,500.00					
1.02	Topografía y georreferenciación	Km	4.917	S/1,331.00	S/6,544.53					
1.03	Mantenimiento de tránsito temporal y seguridad vial	glb	1	S/10,035.47	S/10,035.47					
2.00	Trabajos preliminares				S/6,544.53					
2.01	Trazo y replanteo durante el proceso	Km	4.917	S/1,331.00	S/6,544.53					
3.00	Movimientos de tierras				S/133,280.11					
3.01	Excavación manual en terreno semi compactado	m3	7292.33	8.81	S/64,245.43					
3.02	Preparación de subrasante c/motoniveladora	m2	29502	2.34	S/69,034.68					
4.00	Afirmados				S/1,361,895.01					
4.02	Base granular de afirmado h=0.15m	m3	6059.33	224.76	S/1,361,895.01					
5.00	Eliminación de material excedente				S/51,259.82					

5.01	Acarreo de material excedente hasta una distancia promedio de 30m	m3	1232.8	23.62	S/29,118.74
5.02	Eliminación de material excedente proveniente de corte y excavaciones	m3	1232.8	17.96	S/22,141.09
6.00	Pavimento rígido				S/2,243,124.64
6.01	Pavimento de concreto hidráulico f'c=280kg/cm2	m2	2950.2	507.42	S/1,496,990.48
6.02	Encofrado y desencofrado de pavimento	m2	6883.8	81.29	S/559,584.10
6.03	Curado en pavimentos(arroceras)	m2	29502	2.15	S/63,429.30
6.04	Juntas asfálticas DE 1" h=0.15m	m	14745	8.35	S/123,120.75
7.00	Señalización en pintura				S/39,520.39
7.01	Pintura en pavimentos	m2	1229.25	32.15	S/39,520.39
	COSTO DIRECTO				S/3,853,704.49
	GASTOS GENERALES (10.00%)				S/385,370.45
	UTILIDAD (5.00%)				S/192,685.22
	SUB TOTAL				S/4,431,760.16
	IGV (18.00%)				S/797,716.83
	PRESUPUESTO TOTAL				S/5,229,476.99
	SUPERVISIÓN (1.5%)				S/78,442.15
	COSTO DE INVERSIÓN				S/5,307,919.15

COST	OS DE MANTENIMIENTO RUTINARIO					
Part	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					
	•					26,468.87
1.01	Pavimento de concreto hidráulico f'c=280kg/cm2	m2	29.50	598.76	17,664.49	
1.02	Encofrado y desencofrado de pavimento	m2	68.84	95.92	6,603.09	
1.03	Curado en pavimentos(arroceras)	m2	295.02	2.54	748.47	
1.04	Juntas asfálticas DE 1" h=0.15m	m2	147.45	9.85	1,452.82	
Costo	total					26,468.87
COST	OS DE MANTENIMIENTO PERIÓDICO					
Part	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					52,937.74
1.01	Pavimento de concreto hidráulico f'c=280kg/cm2	m2	59.00	598.76	35,328.98	02,001111
1.02	Encofrado y desencofrado de pavimento	m2	137.68	95.92	13,206.18	
1.03	Curado en pavimentos(arroceras)	m2	590.04	2.54	1,496.93	
1.04	Juntas asfálticas DE 1" h=0.15m	m2	294.90	9.85	2,905.65	
	Costo total					
						52,937.74

7.8 Anexo 10 – Presupuesto del Pavimento articulado

(A) UNS	PAVIMENTO ARTICULADO				A OPPG PD 002
NACIONAL DEL SANTA	PRESUPUESTO				AOPPS-PP-003
	"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PANAM HASTA PUERTO SANTA"	ERICA	NA NORTE	E KM 443	
Ítem	Descripción	Und	Metrado	Precio S/.	Parcial S/.
1.00	Obras Provisionales				S/18,080.00
1.01	Cartel de obra de 6.00 X 3.00	glb	1	S/1,500.00	S/1,500.00
1.02	Topografía y georreferenciación	Km	4.917	S/1,331.00	S/6,544.53
1.03	Mantenimiento de tránsito temporal y seguridad vial	glb	1	S/10,035.47	S/10,035.47
2.00	Trabajos preliminares				S/6,544.53
2.01	Trazo y replanteo durante el proceso	Km	4.917	S/1,331.00	S/6,544.53
3.00	Movimientos de tierras				S/133,280.11
3.01	Excavación manual en terreno semi compactado	m3	7292.33	8.81	S/64,245.43
3.02	Preparación de subrasante c/motoniveladora	m2	29502	2.34	S/69,034.68
4.00	Afirmados				S/1,997,446.02
4.01	Base granular de afirmado h=0.178m	m3	6059.33	329.65	S/1,997,446.02

5.00	Eliminación de material excedente				S/51,259.82
5.01	Acarreo de material excedente hasta una distancia promedio de 30 m	m3	1232.8	23.62	S/29,118.74
5.02	Eliminación de material excedente proveniente de corte y excavaciones	m3	1232.8	17.96	S/22,141.09
6.00	Pavimento articulado				S/1,613,169.36
6.01	Acarreo de adoquín de concreto 20x10x6cm	m2	29502	2.68	S/79,065.36
6.02	Cama de apoyo con arena gruesa e=0.04m.	m2	29502	6.46	S/190,582.92
6.03	Suministro y colocación de adoquinado de concreto 20x10x6cm	m2	29502	45.54	S/1,343,521.08
7.00	Señalización en pintura				S/39,520.39
7.01	Pintura en pavimentos	m3	1229.25	32.15	S/39,520.39
	COSTO DIRECTO				S/3,859,300.22
	GASTOS GENERALES (10.00%)				S/385,930.02
	UTILIDAD (5.00%)				S/192,965.01
	SUB TOTAL				S/4,438,195.25
	IGV (18.00%)				S/798,875.15
	PRESUPUESTO TOTAL				S/5,237,070.40
	SUPERVISIÓN (1.5%)				S/78,556.06
	COSTO DE INVERSIÓN				S/5,315,626.45

Part	OS DE MANTENIMIENTO RUTINARIO			COSTOS	COSTO	СОСТО
rart	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					
			1.10.50	2.16	1 200 46	28,553.10
1.01	Acarreo de adoquín de concreto 20x10x6cm	m2	442.53	3.16	1,399.46	
1.02	Cama de apoyo con arena gruesa e=0.04m.	m2	442.53	7.62	3,373.32	
1.03	Suministro y colocación de adoquinado de concreto 20x10x6cm	m2	442.53	53.74	23,780.32	
Costo	total					28,553.10
COST	OS DE MANTENIMIENTO PERIÓDICO					
Part	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					57,106.20
1.01	Acarreo de adoquín de concreto 20x10x6cm	m2	885.06	3.16	2,798.91	<i>27,</i> 100,20
1.02	Cama de apoyo con arena gruesa e=0.04m.	m2	885.06	7.62	6,746.64	
1.03	Suministro y colocación de adoquinado de concreto 20x10x6cm	m2	885.06	53.74	47,560.65	
	Costo total					57,106.20

7.9 Anexo 11 – Presupuesto del Tratamiento superficial Bicapa + cemento asfaltico

	Tratamiento superficial Bicapa + cemento asfaltico											
UNS MACIONAL DEL SANTA	PRESUPUESTO											
	"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"											
Ítem	Descripción	Und	Metrado	Precio S/.	Parcial S/.							
1.00	Obras Provisionales				S/18,080.00							
1.01	Cartel de obra de 6.00 X 3.00	glb	1	S/1,500.00	S/1,500.00							
1.02	Topografía y georreferenciación	Km	4.917	S/1,331.00	S/6,544.53							
1.03	Mantenimiento de tránsito temporal y seguridad vial	glb	1	S/10,035.47	S/10,035.47							
2.00	Trabajos preliminares				S/6,544.53							
2.01	Trazo y replanteo durante el proceso	Km	4.917	S/1,331.00	S/6,544.53							
3.00	Movimientos de tierras				S/133,280.11							
3.01	Excavación manual en terreno semi compactado	m3	7292.33	8.81	S/64,245.43							
3.02	Preparación de subrasante c/motoniveladora	m2	29502	2.34	S/69,034.68							
4.00	Afirmados			S/2,222,845.01								
4.01 4.02	Sub Base granular de afirmado h=0.10m Base granular de afirmado h=0.127m	m3 m3	6059.33 6059.33	67.17 299.68	S/406,985.00 S/1,815,860.01							

5.00	Eliminación de material excedente				S/51,259.82
5.01	Acarreo de material excedente hasta una distancia promedio de 30m	m3	1232.8	23.62	S/29,118.74
5.02	Eliminación de material excedente proveniente de corte y excavaciones	m3	1232.8	17.96	S/22,141.09
6.00	Conservación de calzada en afirmado				S/1,013,187.19
6.01	Control de polvo mediante cemento asfaltico (e=0.10 mm)	m2	29502	17.65	S/520,710.30
6.02	Imprimación	m2	29502	6.56	S/193,533.12
6.03	Transporte de imprimación	m3	2950.2	101.33	S/298,943.77
7.00	Señalización en pintura				S/39,520.39
7.01	Pintura en pavimentos	m2	1229.25	32.15	\$/39,520.39
	COSTO DIRECTO				S/3,484,717.04
	GASTOS GENERALES (10.00%)				S/348,471.70
	UTILIDAD (5.00%)				S/174,235.85
	SUB TOTAL				S/4,007,424.60
	IGV (18.00%)				S/721,336.43
	PRESUPUESTO TOTAL				S/4,728,761.03
	SUPERVISIÓN (1.5%)				S/70,931.42
	COSTO DE INVERSIÓN				S/4,799,692.44

COST	OS DE MANTENIMIENTO RUTINARIO					
Part	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					17,933.41
1.01	Control de polvo mediante cemento asfaltico (e=0.10 mm)	m2	442.53	20.83	9,216.57	
1.02	Imprimación	m2	442.53	7.74	3,425.54	
1.03	Transporte de imprimación	m3	44.25	119.57	5,291.30	
Costo	total					17,933.41
COST	OS DE MANTENIMIENTO PERIÓDICO					
Part	ACTIVIDADES	UND	CANT	COSTOS UNIT.	COSTO PARCIAL	COSTO TOTAL
1.00	Conservación de pavimento					35,866.83
1.01	Control de polvo mediante cemento asfaltico (e=0.10 mm)	m2	885.06	20.83	18,433.14	
1.02	Imprimación	m2	885.06	7.74	6,851.07	
1.03	Transporte de imprimación	m2	88.51	119.57	10,582.61	
	Costo total					35,866.83

Anexo 12 – Análisis costo/beneficio de las alternativas de pavimentación 7.10

Aplicativo de la Guía Simplificada Caminos Vecinales- Análisis Costo Beneficio

1 GENERALIDADES

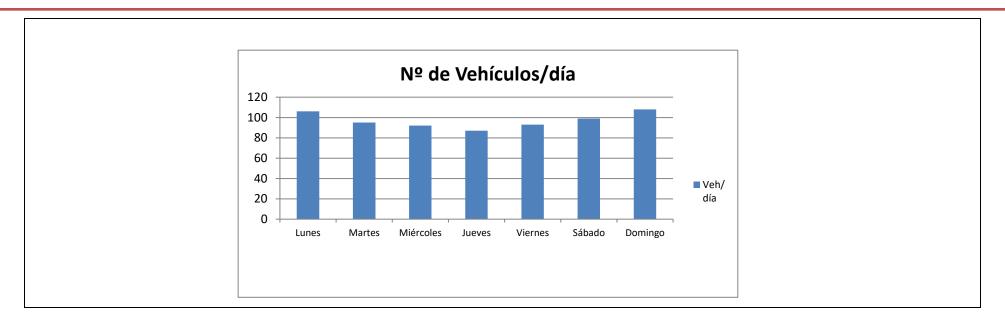
LEYENDA: Datos a ingresar

"ALTERNATIVA ÓPTIMA DE PAVIMENTACIÓN PARA EL TRAMO: PANAMERICANA NORTE KM 443 Nombre del Proyecto:

HASTA PUERTO SANTA"

Departamento: Ancash Provincia: Santa

Distrito: Puerto Santa


Zona Geográfica: Costa Horizonte del Proyecto: 20 años

1. DETERMINACIÓN DEL TRÁNSITO ACTUAL

i) Resumir los conteos de tránsito a nivel del día y tipo de vehículo

Resultados de los conteos de tráfico:			Mes:	Marzo			
Tipo de Vehículo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Motokar/Moto/Moto carga	30	30	28	33	27	29	23
Automóvil/Station Wagon	56	48	49	46	50	58	63
Camioneta	22	25	25	25	26	22	22
Combi	12	6	5	6	6	5	6
Camión 2E	6	7	5	4	4	5	6
Camión 3E	6	5	4	3	4	5	6
Semi tráiler ≥3s3	2	2	2	2	2	3	3
Tráiler > 3E	2	2	2	1	1	1	2
TOTAL	106	95	92	87	93	99	108

2.2 Demanda Proyectada

Para la proyección de la demanda utilizar la siguiente fórmula:

$$T_n = T_{\rm o} \big(1+r\big)^{\!(n\!-\!1)}$$

Tránsito proyectado al año en **Donde:** vehículo por día $T_n =$

Tránsito actual (año base) en

vehículo por día

 $T_0 =$ año futuro de

proyección n =

tasa anual de crecimiento

de tránsito $\mathbf{r} =$

Tasa de Crecimiento x Tasa de Crecimiento Anual de la (para vehículos de Región en %

0.70 pasajeros) Población $\mathbf{r}_{\mathrm{vp}} =$

Tasa de Crecimiento Anual del (para vehículos

0.10 PBI Regional de carga) $\mathbf{r}_{\mathrm{vc}} =$

Proyección de Tráfico - Situación Sin Proyecto

I		1								. ~	~	٠.~	. ~	. ~	. ~	. ~	. ~	. ~	. ~	. ~	T . ~
m, 1 77 1 / 1										Año	Año	Año	Año	Año	Año	Año	Año	Año	Año	Año	Año
Tipo de Vehículo	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	9	10	11	12	13	14	15	16	17	18	19	20
75 / 00 N.T. N.										106.0											
Tráfico Normal	105.00	105.00	105.00	105.00	105.00	105.00	106.00	106.00	106.00	0	108.00	107.00	107.00	107.00	108.00	108.00	108.00	108.00	108.00	108.00	108.00
Motokar/Moto/Mot																					
o carga	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Automóvil/Station																					
Wagon	58.00	58.00	58.00	58.00	58.00	58.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
Camioneta	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00
Combi	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Camión 2E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Camión 3E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Semi tráiler ≥3s3	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Tráiler > 3E	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

2.3 Demanda Proyectada "Con Proyecto"

Tráfico Generado por Tipo de Proyecto

Tipo de Intervención	% de Tráfico Normal
Mejoramiento	15

Proyección de Tráfico - Con Proyecto

Tipo de Vehículo	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año 10	Año 11	Año 12	Año 13	Año 14	Año 15	Año 16	Año 17	Año 18	Año 19	Año 20
Tráfico Normal	105.00	105.00	105.00	105.00	105.00	105.00	106.00	106.00	106.00	106.00	108.00	107.00	107.00	107.00	108.00	108.00	108.00	108.00	108.00	108.00	108.00
Motokar/Moto/Moto	105.00	105.00	105.00	105.00	105.00	105.00	106.00	106.00	106.00	106.00	108.00	107.00	107.00	107.00	108.00	108.00	108.00	108.00	108.00	108.00	108.00
carga	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Automóvil/Station																					
Wagon	58.00	58.00	58.00	58.00	58.00	58.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	59.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
Camioneta	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00
Combi	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Camión 2E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Camión 3E	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Semi tráiler ≥3s3	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Tráiler > 3E	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Tráfico Generado	0.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00
Motokar/Moto/Moto					1				10.00												
carga	0.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
Automóvil/Station					1																
Wagon	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Camioneta	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Combi	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Camión 2E	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Camión 3E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Semi tráiler ≥3s3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IMD TOTAL	105.00	121.00	121.00	121.00	121.00	121.00	122.00	122.00	122.00	122.00	124.00	123.00	123.00	123.00	124.00	124.00	124.00	124.00	124.00	124.00	124.00

Costos de Operación Vehicular En Soles a Precios Sociales

		Con Proyecto								
Año	Sin Proyecto	Sin Proyecto Alternativa 1		Alternativa	Alternativa 2 Alternativa 3			Alternativa	va 4	
		Normal	Generado	Normal	Generado	Normal	Generado	Normal	Generado	
1	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	
2	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	
3	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	
4	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	
5	373,710.43	275,705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	275705.59	39,809.80	
6	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	
7	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	
8	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	
9	376,274.98	277,570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	277570.71	39,809.80	
10	400,368.99	295,848.93	39,809.80	295848.93	39,809.80	295848.93	39,809.80	295848.93	39,809.80	
11	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	
12	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	
13	378,664.67	279,552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	279552.41	39,809.80	
14	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
15	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
16	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
17	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
18	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
19	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	
20	381,229.21	281,417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	281417.53	39,809.80	

Beneficios Incrementales En Soles a Precios Sociales

Año	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
0				
1	117,909.74	117909.74	117909.74	117909.74
2	117,909.74	117909.74	117909.74	117909.74
3	117,909.74	117909.74	117909.74	117909.74
4	117,909.74	117909.74	117909.74	117909.74
5	117,909.74	117909.74	117909.74	117909.74
6	118,609.17	118609.17	118609.17	118609.17
7	118,609.17	118609.17	118609.17	118609.17
8	118,609.17	118609.17	118609.17	118609.17
9	118,609.17	118609.17	118609.17	118609.17
10	124,424.96	124424.96	124424.96	124424.96
11	119,017.16	119017.16	119017.16	119017.16
12	119,017.16	119017.16	119017.16	119017.16
13	119,017.16	119017.16	119017.16	119017.16
14	119,716.58	119716.58	119716.58	119716.58
15	119,716.58	119716.58	119716.58	119716.58
16	119,716.58	119716.58	119716.58	119716.58
17	119,716.58	119716.58	119716.58	119716.58
18	119,716.58	119716.58	119716.58	119716.58
19	119,716.58	119716.58	119716.58	119716.58
20	119,716.58	119716.58	119716.58	119716.58

EVALUACIÓN ECONÓMICA

EVALUACIÓN ECONÓMICA - ALTERNATIVA 1-PAVIMENTO FLEXIBLE (En Nuevos Soles)

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	3,915,481.83			-3,915,481.83
1		-14,940.72	3,747,909.74	3,762,850.5
2		-14,940.72	117,909.74	132,850.47
3		-14,940.72	117,909.74	132,850.47
4		-14,940.72	117,909.74	132,850.47
5		-17,574.44	117,909.74	135,484.18
6		-14,940.72	118,609.17	133,549.89
7		-14,940.72	118,609.17	133,549.89
8		-14,940.72	118,609.17	133,549.89
9		-14,940.72	118,609.17	133,549.89
10		-17,574.44	124,424.96	141,999.40
11		-14,940.72	119,017.16	133,957.89
12		-14,940.72	119,017.16	133,957.89
13		-14,940.72	119,017.16	133,957.89
14		-14,940.72	119,716.58	134,657.31
15		-17,574.44	119,716.58	137,291.02
16		-14,940.72	119,716.58	134,657.31
17		-14,940.72	119,716.58	134,657.31
18		-14,940.72	119,716.58	134,657.31
19		-14,940.72	119,716.58	134,657.31
20	-195,774.09	-17,574.44	119,716.58	333,065.11

Tasa de Descuento:	10.00%	VAN	555,820.71
		TIR	16.25%

EVALUACIÓN ECONÓMICA - ALTERNATIVA 2- PAVIMENTO RÍGIDO (En Nuevos Soles)

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	4,193,256.13			-4,193,256.13
1		-11,549.14	3,747,909.74	3,759,458.9
2		-11,549.14	117,909.74	129,458.88
3		-11,549.14	117,909.74	129,458.88
4		-11,549.14	117,909.74	129,458.88
5		-18,301.86	117,909.74	136,211.60
6		-11,549.14	118,609.17	130,158.30
7		-11,549.14	118,609.17	130,158.30
8		-11,549.14	118,609.17	130,158.30
9		-11,549.14	118,609.17	130,158.30
10		-18,301.86	124,424.96	142,726.82
11		-11,549.14	119,017.16	130,566.30
12		-11,549.14	119,017.16	130,566.30
13		-11,549.14	119,017.16	130,566.30
14		-11,549.14	119,716.58	131,265.72
15		-18,301.86	119,716.58	138,018.44
16		-11,549.14	119,716.58	131,265.72
17		-11,549.14	119,716.58	131,265.72
18		-11,549.14	119,716.58	131,265.72
19		-11,549.14	119,716.58	131,265.72
20	-209,662.81	-18,301.86	119,716.58	347,681.25

		VAN	256,980.4
Tasa de			
Descuento:	10.00%	TIR	12.55%

EVALUACIÓN ECONÓMICA - ALTERNATIVA 3-PAVIMENTO ARTICULADO (En Nuevos Soles)

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	0	4,199,344.90		
1	1		-9,985.97	3,747,909.7
2	2		-9,985.97	117,909.74
3	3		-9,985.97	117,909.74
4	4		-9,985.97	117,909.74
5	5		-15,175.52	117,909.74
6	6		-9,985.97	118,609.17
7	7		-9,985.97	118,609.17
8	8		-9,985.97	118,609.17
9	9		-11,549.14	118,609.17
10	10		-15,175.52	124,424.96
11	11		-9,985.97	119,017.16
12	12		-9,985.97	119,017.16
13	13		-9,985.97	119,017.16
14	14		-9,985.97	119,716.58
15	15		-15,175.52	119,716.58
16	16		-9,985.97	119,716.58
17	17		-9,985.97	119,716.58
18	18		-9,985.97	119,716.58
19	19		-9,985.97	119,716.58
20	20	-209,967.25	-15,175.52	119,716.58

		VAN	236,111.8
Tasa de			
Descuento:	10.00%	TIR	12.34%

EVALUACIÓN ECONÓMICA - ALTERNATIVA 4-TRATAMIENTO SUPERFICIAL (En Nuevos Soles)

Año	Inversión	Costo de Operación y Mantenimiento	Beneficios	Flujo Neto
0	3,791,757.03			-3,791,757.03
1		-17,950.73	3,747,909.74	3,765,860.48
2		-17,950.73	117,909.74	135,860.48
3		-17,950.73	117,909.74	135,860.48
4		-17,950.73	117,909.74	135,860.48
5		-31,105.05	117,909.74	149,014.79
6		-17,950.73	118,609.17	136,559.90
7		-17,950.73	118,609.17	136,559.90
8		-17,950.73	118,609.17	136,559.90
9		-17,950.73	118,609.17	136,559.90
10		-31,105.05	124,424.96	155,530.01
11		-17,950.73	119,017.16	136,967.89
12		-17,950.73	119,017.16	136,967.89
13		-17,950.73	119,017.16	136,967.89
14		-17,950.73	119,716.58	137,667.31
15		-31,105.05	119,716.58	150,821.63
16		-17,950.73	119,716.58	137,667.31
17		-17,950.73	119,716.58	137,667.31
18		-17,950.73	119,716.58	137,667.31
19		-17,950.73	119,716.58	137,667.31
20	-189,587.85	-31,105.05	119,716.58	340,409.48

		VAN	718,922.8
Tasa de			
Descuento:	10.00%	TIR	18.51%

7.11 Anexo 13 - Panel Fotográfico

Foto 01:

Excavación para tomar muestra de suelo – calicata 01.

Foto 02:

Excavación para tomar muestra de suelo – calicata 02.

Foto 03:

Ubicación de la estación de control para de conteo de vehículos.

Foto 04:

Levantamiento topográfico de la zona de estudio.

Foto 05:

Levantamiento topográfico de la zona de estudio.

Foto 06:

Ensayo para determinar el tamaño de las partículas de una muestra de suelo.

Foto 07:

Ensayo para determinar el contenido de humedad de una muestra de suelo.

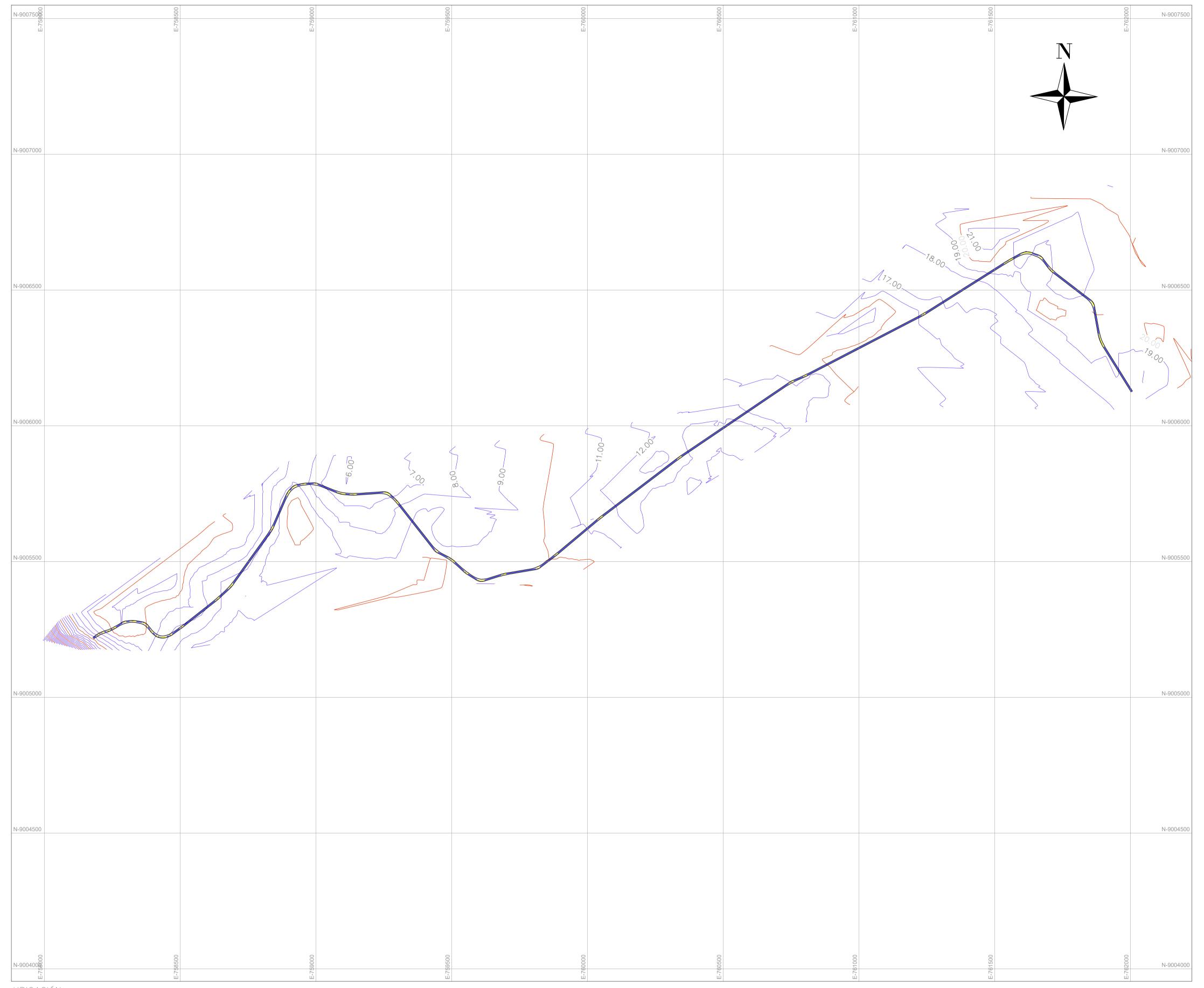
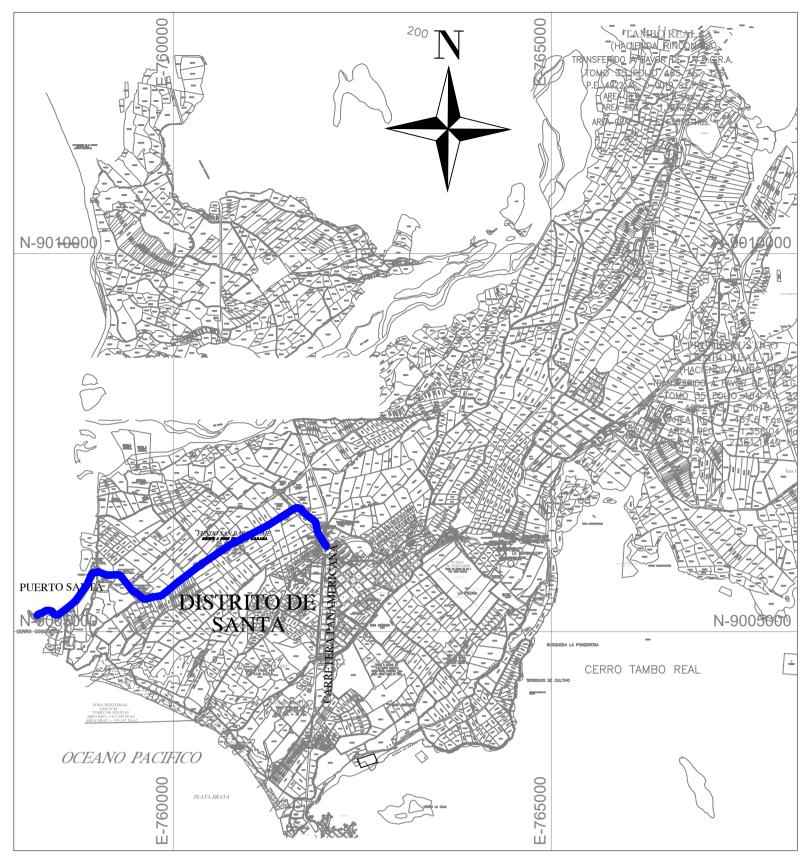


Foto 08:


Muestra seca de suelo extraído.

7.3 Anexo **14** – Planos

UBICACIÓN ESC:1/7500

"ALTERNATIVA OPTIMA DE PAVIMENTACIÓN PARA EL TRAMO PANAMERICANA NORTE KM 443 HASTA PUERTO SANTA"

PLANO DE UBICACIÓN Y LOCALIZACIÓN

(UNS	UBIC	ACIÓN:
NACIONAL DEL SANTA	REGIÓN	: ANCASH
UNIVERSIDAD	PROVINCIA	: SANTA

CONSULT.	ESCALA:	INDICAD	DIB:
RES.	_		 ▲

DECLARACION JURADA DE AUTORIA

TOTAL OF									
Yo, Bach. Estudiante	Barriga Gleni, D de la	iego Rafa	el						
Facultad:	Ciencias		Educ	ación			Ingeniería		x
Departamento Académico Ingeniería Civil y Sistemas e Informática									
Escuela	Profesional	onal Ingeniria Civil		х		Doctorado			
Programa:	:	.1		,					
De la Univ	ersidad Nacion	al del San	ta; Decla	ro que el	traba	jo de i	nvestigació	n intit	ulado:
"Alternativ	a optima de pa	vimentació	n para el Puerto S	l tramo: F Santa"	Panan	nericar	na Norte kn	า 443	hasta
Presentado	en 221folio	s, para la c	obtención	de grade	o aca	démico	0		
Título profesional (x) Investigación anual ())					
declara Este tra parcial Compre revisad	ado todas las fadas en el prese abajo de invest mente para la o endo que el tra lo electrónicam ontrarse uso de o a las sancione	ente trabajo igación no obtención d abajo de ir ente para l e material i	o. ha sido le grado a nvestigac la detecci ntelectua	presenta académic ión será ión de pla I sin reco	ado co co o tí públic agio p nocim	on anto tulo pr co y p oor VR niento	erioridad n rofesional. or lo tanto IN. de su fuent	i com sujet	pleta r to a se
				Nuc	evo C	himbo	ote, 06 de N	larzo	de 202
Firma:	MA				1 -				
Nombres y Ap	ellidos: Barriga (Gleni, Dieg	jo Rafael						
	DNI: 7254	17315				.,	os un trah	aio in	édito

NOTA: Esta Declaración Jurada simple indicando que su investigación es un trabajo inédito, no exime a tesistas e investigadores, que no bien se retome el servicio con el software antiplagio, ésta tendrá que ser aplicado antes que el informe final sea publicado en el Repositorio Institucional Digital UNS.

20 TH	DECLARACION JURADA DE AUTORIA								
Yo, Bach.	De La Cruz S	Sánchez, Jers	on Aldair	•					
Estudiante	de la								
Facultad:	Ciencias		Educación Ingenier						
Departame	ento Académio	mico Ingeniería Civil y Sistemas e Informática							
Escuela	Profesional	Ingeniri	a Civil	х	Do	ctorado			
Programa	:								
De la Univ	ersidad Naci	onal del Sant	a; Declar	o que el	trabajo de	investigació	n intitulado:		
"Alternativ	a optima de _l	pavimentació	n para el Puerto S		anamerica	ana Norte kn	n 443 hasta		
Presentado	en .&&Łfol	lios, para la o	btención	de grado	académi	СО			
Título profesional (x) Investigación anual ())				
 He citado todas las fuentes empleadas, no he utilizado otra fuente distinta a las declaradas en el presente trabajo. Este trabajo de investigación no ha sido presentado con anterioridad ni completa ni parcialmente para la obtención de grado académico o título profesional. Comprendo que el trabajo de investigación será público y por lo tanto sujeto a ser revisado electrónicamente para la detección de plagio por VRIN. De encontrarse uso de material intelectual sin reconocimiento de su fuente o autor, me someto a las sanciones que determinan el proceso disciplinario. 									
			_	Nue	vo Chimb	ote, 06 de M	larzo de 202		
Firma:	4	>			a sample a telesion				
lombres y Ape	ellidos: De La (Cruz Sánche	z, Jerson	Aldair			- A 1		
	DNI: 70/	42037	Ty - 1		to de la		in the contract		

NOTA: Esta Declaración Jurada simple indicando que su investigación es un trabajo inédito, no exime a tesistas e investigadores, que no bien se retome el servicio con el software antiplagio, ésta tendrá que ser aplicado antes que el informe final sea publicado en el Repositorio Institucional Digital UNS.

ACTA DE APROBACIÓN DE ORIGINALIDAD

0011									
•	her Alvarez Asto Investigación de								
Facultad:	Ciencias	Educación					Ingeniería		
Departame	nto Académico:	Civil y S	Civil y Sistemas						
Escuela pro	fesional	Ingenieria civil		X	Doctorado		ctorado		
Programa	:1							1	
De la Univ	versidad Naciona	l del Santa	. Asesor	del trabaj	o de Ir	ives	tigación intitu	ulad	o:
"ALTER	NATIVA OPTIMA NO	DE PAVII RTE KM 4						ERI	CANA
Y	udiantes: Barriga							Alda	air
De la escu	ela / departamen	to académ	ico: Ing. C	Civil-Siste	mas e	Info	rmática 📉		111 °
	jue el docente in sentarlo a falta de					ració	on jurada, tal	l con	no se ha
coincidenc	cribe la presente las detectadas n ón cumple con la el Santa.	o se conf	orman co	mo plagi	o. A r	ni cl	aro saber y	ent	ender, la
	4		1	Nue	o Chi	mbo	te, 20 de Oc	tubre	e de 202
Firma:		Geen	f	,				V	ļ. li,
Nombres y Ap	pellidos del Asesor:	Luz Esthe	r Alvarez	Asto					
DNI: 329689	61						1		1 *